133 research outputs found

    A non-WSSUS mobile-to-mobile channel model assuming velocity variations of the mobile stations

    Get PDF
    This paper aims to characterize the effects that the velocity variations of the mobile stations (MSs) produce on the correlation properties of non-stationary time-frequency (TF) dispersive mobile- to-mobile (M2M) fading channels. Toward that end, we propose a novel geometrical model for non-wide-sense stationary uncorrelated scattering (non-WSSUS) M2M channels that incorporates such variations following a plane wave propagation approach. Capitalizing on the mathematical simplicity of this approach, we derive a general expression for the four-dimensional (4D) TF correlation function (TFCF) of the proposed channel model. From this expression, we analyze the influence of the MSs' acceleration#x002F;deceleration on the channel's correlation properties. Some simulation examples illustrating our findings are presented for the particular case of the geometrical one-ring scattering model. The proposed channel model can be used as a reference to study the performance of emerging vehicular communication systems in safety-threatening scenarios, such as when a MS is forced to break suddenly.acceptedVersionnivå

    Doppler Shift Characterization of Wideband Mobile Radio Channels

    Get PDF
    Author's accepted manuscript (post-print).© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Available from 08/10/2021.acceptedVersio

    Geometry-Based Statistical Modeling of Non-WSSUS Mobile-to-Mobile Rayleigh Fading Channels

    Get PDF
    In this paper, we present a novel geometry-based statistical model for small-scale non-wide-sense stationary uncorrelated scattering (non-WSSUS) mobile-to-mobile (M2M) Rayleigh fading channels. The proposed model builds on the principles of plane wave propagation to capture the temporal evolution of the propagation delay and Doppler shift of the received multipath signal. This is different from existing non-WSSUS geometry-based statistical channel models, which are based on a spherical wave propagation approach, that in spite of being more realistic is more mathematically intricate. By considering an arbitrary geometrical configuration of the propagation area, we derive general expressions for the most important statistical quantities of nonstationary channels, such as the first-order probability density functions of the envelope and phase, the four-dimensional (4-D) time-frequency correlation function (TF-CF), local scattering function (LSF), and time-frequency-dependent delay and Doppler profiles. We also present an approximate closed-form expression of the channel's 4-D TF-CF for the particular case of the geometrical one-ring scattering model. The obtained results provide new theoretical insights into the correlation and spectral properties of non-WSSUS M2M Rayleigh fading channels.acceptedVersionnivå

    Propagation channel characterisation and modelling for high-speed train communication systems

    Get PDF
    High-mobility scenarios, e.g., High-Speed Train (HST) scenarios, are expected to be typical scenarios for the Fifth Generation (5G) communication systems. With the rapid development of HSTs, an increasing volume of wireless communication data is required to be transferred to train passengers. HST users demand high network capacity and reliable communication services regardless of their locations or speeds, which are beyond the capability of current HST communication systems. The features of HST channels are significantly different from those of low-mobility cellular communication systems. For a proper design and evaluation of future HST wireless communication systems, we need accurate channel models that can mimic the underlying channel characteristics, especially the non-stationarity for different HST scenarios. Inspired by the lack of such accurate HST channel models in the literature, this PhD project is devoted to the modelling and simulation of non-stationary Multiple-Input Multiple-Output (MIMO) channels for HST communication systems. In this thesis, we first give a comprehensive review of the measurement campaigns conducted in different HST scenarios and address the recent advances in HST channel models. We also highlight the key challenges of HST channel measurements and models. Then, we study the characterisation of non-stationary channels and propose a theoretical framework for deriving the statistical properties of these channels. HST wireless communication systems encounter different channel conditions due to the difference of surrounding geographical environments or scenarios. HST channel models in the literature have either considered large-scale parameters only and/or neglected the non-stationarity of HST channels and/or only consider one of the HST scenarios. Therefore, we propose a novel generic non-stationary Geometry-Based Stochastic Model (GBSM) for wideband MIMO HST channels in different HST scenarios, i.e., open space, viaduct, and cutting. The corresponding simulation model is then developed with angular parameters calculated by the Modified Method of Equal Area (MMEA). The system functions and statistical properties of the proposed channel models are thoroughly studied. The proposed generic non-stationary HST channel models are verified by measurements in terms of stationary time for the open space scenario and the Autocorrelation Function (ACF), Level Crossing Rate (LCR), and stationary distance for the viaduct and cutting scenarios. Transmission techniques which are capable of utilising Three-Dimensional (3D) spatial dimensions are significant for the development of future communication systems. Consequently, 3D MIMO channel models are critical for the development and evaluation of these techniques. Therefore, we propose a novel 3D generic non-stationary GBSM for wideband MIMO HST channels in the most common HST scenarios. The corresponding simulation model is then developed with angular parameters calculated by the Method of Equal Volume (MEV). The proposed models considers several timevarying channel parameters, such as the angular parameters, the number of taps, the Ricean K-factor, and the actual distance between the Transmitter (Tx) and Receiver (Rx). Based on the proposed generic models, we investigate the impact of the elevation angle on some of the channel statistical properties. The proposed 3D generic models are verified using relevant measurement data. Most standard channel models in the literature, like Universal Mobile Telecommunications System (UMTS), COST 2100, and IMT-2000 failed to introduce any of the HST scenarios. Even for the standard channel models which introduced a HST scenario, like IMT-Advanced (IMT-A) and WINNER II channel models, they offer stationary intervals that are noticeably longer than those in measured HST channels. This has inspired us to propose a non-stationary IMT-A channel model with time-varying parameters including the number of clusters, powers, delays of the clusters, and angular parameters. Based on the proposed non-stationary IMT-A channel model, important statistical properties, i.e., the time-variant spatial Cross-correlation Function (CCF) and time-variant ACF, are derived and analysed. Simulation results demonstrate that the stationary interval of the developed non-stationary IMT-A channel model can match that of relevant HST measurement data. In summary, the proposed theoretical and simulation models are indispensable for the design, testing, and performance evaluation of 5G high-mobility wireless communication systems in general and HST ones in specific

    A Non-Stationary IMT-Advanced MIMO Channel Model for High-Mobility Wireless Communication Systems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.With the recent developments of high-mobility wireless communication systems, e.g., high-speed train (HST) and vehicle-to-vehicle (V2V) communication systems, the ability of conventional stationary channel models to mimic the underlying channel characteristics has widely been challenged. Measurements have demonstrated that the current standardized channel models, like IMT-Advanced (IMT-A) and WINNER II channel models, offer stationary intervals that are noticeably longer than those in measured HST channels. In this paper, we propose a non-stationary channel model with time-varying parameters including the number of clusters, the powers and the delays of the clusters, the angles of departure (AoDs), and the angles of arrival (AoAs). Based on the proposed non-stationary IMT-A channel model, important statistical properties, i.e., the local spatial cross-correlation function (CCF) and local temporal autocorrelation function (ACF) are derived and analyzed. Simulation results demonstrate that the statistical properties vary with time due to the non-stationarity of the proposed channel model. An excellent agreement is achieved between the stationary interval of the developed non-stationary IMT-A channel model and that of relevant HST measurement data, demonstrating the utility of the proposed channel model

    Contributions to channel modelling and performance estimation of HAPS-based communication systems regarding IEEE Std 802.16TM

    Get PDF
    New and future telecommunication networks are and will be broadband type. The existing terrestrial and space radio communication infrastructures might be supplemented by new wireless networks that make and will make use of aeronautics-technology. Our study/contribution is referring to radio communications based on radio stations aboard a stratospheric platform named, by ITU-R, HAPS (High Altitude Platform Station). These new networks have been proposed as an alternative technology within the ITU framework to provide various narrow/broadband communication services. With the possibility of having a payload for Telecommunications in an aircraft or a balloon (HAPS), it can be carried out radio communications to provide backbone connections on ground and to access to broadband points for ground terminals. The latest implies a complex radio network planning. Therefore, the radio coverage analysis at outdoors and indoors becomes an important issue on the design of new radio systems. In this doctoral thesis, the contribution is related to the HAPS application for terrestrial fixed broadband communications. HAPS was hypothesised as a quasi-static platform with height above ground at the so-called stratospheric layer. Latter contribution was fulfilled by approaching via simulations the outdoor-indoor coverage with a simple efficient computational model at downlink mode. This work was assessing the ITU-R recommendations at bands recognised for the HAPS-based networks. It was contemplated the possibility of operating around 2 GHz (1820 MHz, specifically) because this band is recognised as an alternative for HAPS networks that can provide IMT-2000 and IMT-Advanced services. The global broadband radio communication model was composed of three parts: transmitter, channel, and receiver. The transmitter and receiver parts were based on the specifications of the IEEE Std 802.16TM-2009 (with its respective digital transmission techniques for a robust-reliable link), and the channel was subjected to the analysis of radio modelling at the level of HAPS and terrestrial (outdoors plus indoors) parts. For the channel modelling was used the two-state characterisation (physical situations associated with the transmitted/received signals), the state-oriented channel modelling. One of the channel-state contemplated the environmental transmission situation defined by a direct path between transmitter and receiver, and the remaining one regarded the conditions of shadowing. These states were dependent on the elevation angle related to the ray-tracing analysis: within the propagation environment, it was considered that a representative portion of the total energy of the signal was received by a direct or diffracted wave, and the remaining power signal was coming by a specular wave, to last-mentioned waves (rays) were added the scattered and random rays that constituted the diffuse wave. At indoors case, the variations of the transmitted signal were also considering the following matters additionally: the building penetration, construction material, angle of incidence, floor height, position of terminal in the room, and indoor fading; also, these indoors radiocommunications presented different type of paths to reach the receiver: obscured LOS, no LOS (NLOS), and hard NLOS. The evaluation of the feasible performance for the HAPS-to-ground terminal was accomplished by means of thorough simulations. The outcomes of the experiment were presented in terms of BER vs. Eb/N0 plotting, getting significant positive conclusions for these kind of system as access network technology based on HAPS

    Sensitivity of mobile devices to doppler shifts and poor synchronization between UMTS transmitters

    Get PDF
    Projecte final de carrera fet en col.laboració amb Technische Universiteit EindhovenUMTS network, also known as Third Generation (3G) mobile radio system, aims to provide services such as: mobile communication, data streaming, internet and driving guidance. The UMTS signal uses the frequency channel of 2GHz. This channel introduces some propagation difficulties like multipath effect, Doppler shifts and fading. UMTS improves the well known hard-handover process from 2G networks into the soft-handover. During the soft-handover, the mobile station is connected to different transmitters at the same time. The bad frequency synchronization of these transmitters creates the same propagation difficulties. These bad effects aforementioned can affect the quality of the communication between the Base Station and the mobile device. The thesis presents the study of propagation effects on the received frequency and compares the results with the synchronization requirements of the transmitters. BER simulations where done to study the reception quality in high-speed conditions. Furthermore, we introduce a method to reduce the impact of fast-device movement that can be used in the softhandover procedure to reduce the effect of bad synchronization

    Propagation Aspects in Vehicular Networks

    Get PDF
    corecore