2,106 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Persistent Homology of Attractors For Action Recognition

    Full text link
    In this paper, we propose a novel framework for dynamical analysis of human actions from 3D motion capture data using topological data analysis. We model human actions using the topological features of the attractor of the dynamical system. We reconstruct the phase-space of time series corresponding to actions using time-delay embedding, and compute the persistent homology of the phase-space reconstruction. In order to better represent the topological properties of the phase-space, we incorporate the temporal adjacency information when computing the homology groups. The persistence of these homology groups encoded using persistence diagrams are used as features for the actions. Our experiments with action recognition using these features demonstrate that the proposed approach outperforms other baseline methods.Comment: 5 pages, Under review in International Conference on Image Processin

    Activity Representation from Video Using Statistical Models on Shape Manifolds

    Get PDF
    Activity recognition from video data is a key computer vision problem with applications in surveillance, elderly care, etc. This problem is associated with modeling a representative shape which contains significant information about the underlying activity. In this dissertation, we represent several approaches for view-invariant activity recognition via modeling shapes on various shape spaces and Riemannian manifolds. The first two parts of this dissertation deal with activity modeling and recognition using tracks of landmark feature points. The motion trajectories of points extracted from objects involved in the activity are used to build deformation shape models for each activity, and these models are used for classification and detection of unusual activities. In the first part of the dissertation, these models are represented by the recovered 3D deformation basis shapes corresponding to the activity using a non-rigid structure from motion formulation. We use a theory for estimating the amount of deformation for these models from the visual data. We study the special case of ground plane activities in detail because of its importance in video surveillance applications. In the second part of the dissertation, we propose to model the activity by learning an affine invariant deformation subspace representation that captures the space of possible body poses associated with the activity. These subspaces can be viewed as points on a Grassmann manifold. We propose several statistical classification models on Grassmann manifold that capture the statistical variations of the shape data while following the intrinsic Riemannian geometry of these manifolds. The last part of this dissertation addresses the problem of recognizing human gestures from silhouette images. We represent a human gesture as a temporal sequence of human poses, each characterized by a contour of the associated human silhouette. The shape of a contour is viewed as a point on the shape space of closed curves and, hence, each gesture is characterized and modeled as a trajectory on this shape space. We utilize the Riemannian geometry of this space to propose a template-based and a graphical-based approaches for modeling these trajectories. The two models are designed in such a way to account for the different invariance requirements in gesture recognition, and also capture the statistical variations associated with the contour data

    Parametric Human Movements:Learning, Synthesis, Recognition, and Tracking

    Get PDF

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table

    Activity recognition using a supervised non-parametric hierarchical HMM

    Get PDF
    The problem of classifying human activities occurring in depth image sequences is addressed. The 3D joint positions of a human skeleton and the local depth image pattern around these joint positions define the features. A two level hierarchical Hidden Markov Model (H-HMM), with independent Markov chains for the joint positions and depth image pattern, is used to model the features. The states corresponding to the H-HMM bottom level characterize the granular poses while the top level characterizes the coarser actions associated with the activities. Further, the H-HMM is based on a Hierarchical Dirichlet Process (HDP), and is fully non-parametric with the number of pose and action states inferred automatically from data. This is a significant advantage over classical HMM and its extensions. In order to perform classification, the relationships between the actions and the activity labels are captured using multinomial logistic regression. The proposed inference procedure ensures alignment of actions from activities with similar labels. Our construction enables information sharing, allows incorporation of unlabelled examples and provides a flexible factorized representation to include multiple data channels. Experiments with multiple real world datasets show the efficacy of our classification approach

    Nonparametric discriminant HMM and application to facial expression recognition

    Get PDF
    Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009, p. 2090-2096This paper presents a nonparametric discriminant HMM and applies it to facial expression recognition. In the proposed HMM, we introduce an effective nonparametric output probability estimation method to increase the discrimination ability at both hidden state level and class level. The proposed method uses a nonparametric adaptive kernel to utilize information from all classes and improve the discrimination at class level. The discrimination between hidden states is increased by defining membership coefficients which associate each reference vector with hidden states. The adaption of such coefficients is obtained by the Expectation Maximization (EM) method. Furthermore, we present a general formula for the estimation of output probability, which provides a way to develop new HMMs. Finally, we evaluate the performance of the proposed method on the CMU expression database and compare it with other nonparametric HMMs. © 2009 IEEE.published_or_final_versio
    corecore