7,282 research outputs found

    Difference image photometry with bright variable backgrounds

    Full text link
    Over the last two decades the Andromeda Galaxy (M31) has been something of a test-bed for methods aimed at obtaining accurate time-domain relative photometry within highly crowded fields. Difference imaging methods, originally pioneered towards M31, have evolved into sophisticated methods, such as the Optimal Image Subtraction (OIS) method of Alard & Lupton (1998), that today are most widely used to survey variable stars, transients and microlensing events in our own Galaxy. We show that modern difference image (DIA) algorithms such as OIS, whilst spectacularly successful towards the Milky Way bulge, may perform badly towards high surface brightness targets such as the M31 bulge. Poor results can occur in the presence of common systematics which add spurious flux contributions to images, such as internal reflections, scattered light or fringing. Using data from the Angstrom Project microlensing survey of the M31 bulge, we show that very good results are usually obtainable by first performing careful photometric alignment prior to using OIS to perform point-spread function (PSF) matching. This separation of background matching and PSF matching, a common feature of earlier M31 photometry techniques, allows us to take full advantage of the powerful PSF matching flexibility offered by OIS towards high surface brightness targets. We find that difference images produced this way have noise distributions close to Gaussian, showing significant improvement upon results achieved using OIS alone. We show that with this correction light-curves of variable stars and transients can be recovered to within ~10 arcseconds of the M31 nucleus. Our method is simple to implement and is quick enough to be incorporated within real-time DIA pipelines. (Abridged)Comment: 12 pages. Accepted for publication in MNRAS. Includes an expanded discussion of DIA testing and results, including additional lightcurve example

    A GPU-accelerated real-time NLMeans algorithm for denoising color video sequences

    Get PDF
    Abstract. The NLMeans filter, originally proposed by Buades et al., is a very popular filter for the removal of white Gaussian noise, due to its simplicity and excellent performance. The strength of this filter lies in exploiting the repetitive character of structures in images. However, to fully take advantage of the repetitivity a computationally extensive search for similar candidate blocks is indispensable. In previous work, we presented a number of algorithmic acceleration techniques for the NLMeans filter for still grayscale images. In this paper, we go one step further and incorporate both temporal information and color information into the NLMeans algorithm, in order to restore video sequences. Starting from our algorithmic acceleration techniques, we investigate how the NLMeans algorithm can be easily mapped onto recent parallel computing architectures. In particular, we consider the graphical processing unit (GPU), which is available on most recent computers. Our developments lead to a high-quality denoising filter that can process DVD-resolution video sequences in real-time on a mid-range GPU

    Weak Lensing of Intensity Mapping: the Cosmic Infrared Background

    Full text link
    Gravitational lensing deflects the paths of cosmic infrared background (CIB) photons, leaving a measurable imprint on CIB maps. The resulting statistical anisotropy can be used to reconstruct the matter distribution out to the redshifts of CIB sources. To this end, we generalize the CMB lensing quadratic estimator to any weakly non-Gaussian source field, by deriving the optimal lensing weights. We point out the additional noise and bias caused by the non-Gaussianity and the `self-lensing' of the source field. We propose methods to reduce, subtract or model these non-Gaussianities. We show that CIB lensing should be detectable with Planck data, and detectable at high significance for future CMB experiments like CCAT-Prime. The CIB thus constitutes a new source image for lensing studies, providing constraints on the amplitude of structure at intermediate redshifts between galaxies and the CMB. CIB lensing measurements will also give valuable information on the star formation history in the universe, constraining CIB halo models beyond the CIB power spectrum. By laying out a detailed treatment of lens reconstruction from a weakly non-Gaussian source field, this work constitutes a stepping stone towards lens reconstruction from continuum or line intensity mapping data, such as the Lyman-alpha emission, absorption, and the 21cm radiation.Comment: Accepted in Physical Review

    Statistical interpretation of non-local means

    Get PDF
    • …
    corecore