22 research outputs found

    Performance improvement of fractional N-PLL synthesizers for digital communication applications

    Get PDF
    Loop filter with two order was designed to improve the performance of the fractional N-phase locked loop (PLL) circuit (reference spurs noise and switching time), decreasing these two factors give good characteristic to fractional N-PLL circuit, the second order and third order loop filters are widely used in frequency synthesizer because they give good stability tolerance and for their simple architecture. They are designed at bandwidth B=125 KHz and its multipoles, at two values of the phase margin (pm)= 35°, 57°. MATLAB program was used to find the lock time, the component values for each element in the loop filter, also the filter impedance T(s), the bode plot of frequency response for close loop (CL) and open loop gain (OL). It is found by comparing the result of the frequency response for the 2nd order loop filter and 3rd order loop filter, that increasing the order of the filter will reduce the spurs noise that destroy the received signal at receiving side

    Analysis and Design of Energy Efficient Frequency Synthesizers for Wireless Integrated Systems

    Full text link
    Advances in ultra-low power (ULP) circuit technologies are expanding the IoT applications in our daily life. However, wireless connectivity, small form factor and long lifetime are still the key constraints for many envisioned wearable, implantable and maintenance-free monitoring systems to be practically deployed at a large scale. The frequency synthesizer is one of the most power hungry and complicated blocks that not only constraints RF performance but also offers subtle scalability with power as well. Furthermore, the only indispensable off-chip component, the crystal oscillator, is also associated with the frequency synthesizer as a reference. This thesis addresses the above issues by analyzing how phase noise of the LO affect the frequency modulated wireless system in different aspects and how different noise sources in the PLL affect the performance. Several chip prototypes have been demonstrated including: 1) An ULP FSK transmitter with SAR assisted FLL; 2) A ring oscillator based all-digital BLE transmitter utilizing a quarter RF frequency LO and 4X frequency multiplier; and 3) An XO-less BLE transmitter with an RF reference recovery receiver. The first 2 designs deal with noise sources in the PLL loop for ultimate power and cost reduction, while the third design deals with the reference noise outside the PLL and explores a way to replace the XO in ULP wireless edge nodes. And at last, a comprehensive PN theory is proposed as the design guideline.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153420/1/chenxing_1.pd

    Clock multiplication techniques for high-speed I/Os

    Get PDF
    Generation of a low-jitter, high-frequency clock from a low-frequency reference clock using classical analog phase-locked loops (PLLs) requires a large loop filter capacitor and power hungry oscillator. Digital PLLs can help reduce area but their jitter performance is severely degraded by quantization error. In this dissertation different clock multiplication techniques have been explored that can be suitable for high-speed wireline systems. With the emphasis on ring oscillator based architecture using cascaded stages, three possible architectures are explored. First, a scrambling TDC (STDC) is presented to improve deterministic jitter (DJ) performance when used with a low-frequency reference clock. A cascaded architecture with digital multiplying delay locked loop as the first stage and hybrid analog/digital PLL as the second stage is used to achieve low random jitter in a power efficient manner. Fabricated in a 90nm CMOS process, the prototype frequency synthesizer consumes 4.76mW power from a 1.0V supply and generates 160MHz and 2.56 GHz output clocks from a 1.25MHz crystal reference frequency. The long-term absolute jitter of the 60MHz digital MDLL and 2.56 GHz digital PLL outputs are 2.4 psrms and 4.18 psrms, while the peak-to-peak jitter is 22.1 ps and 35.2 ps, respectively. The proposed frequency synthesizer occupies an active die area of 0.16mm2 and achieves power efficiency of 1.86 mW/GHz. Second, a hybrid phase/current-mode phase interpolator (HPC-PI) is presented to improve phase noise performance of ring oscillator-based fractional-N PLLs. The proposed HPC-PI alleviates the bandwidth trade-off between VCO phase noise suppression and ΔΣ quantization noise suppression. By combining the phase detection and interpolation functions into an XOR phase detector/interpolator (XOR PD-PI) block, accurate quantization error cancellation is achieved without using calibration. Use of a digital MDLL in front of the fractional-N PLL helps in alleviating the bandwidth limitation due to reference frequency and enables bandwidth extension even further. The extended bandwidth helps in suppressing the ring-VCO phase noise and lowering the in-band noise floor. Fabricated in 65nm CMOS process, the prototype generates fractional frequencies from 4.25 to 4.75 GHz, with an in-band phase noise floor of -104 dBc/Hz and 1.5 psrms integrated jitter. The clock multiplier achieves power efficiency of 2.4mW/GHz and FoM of -225.8 dB. Finally, an efficient clock generation, recovery, and distribution techniques for flexible-rate transceivers are presented. Using a fixed-frequency low-jitter clock provided by an integer-N PLL, fractional frequencies are generated/recovered locally using multi-phase fractional clock multipliers. Fabricated in a 65nm CMOS, the prototype transceiver can be programmed to operate at any rate from 3-to-10 Gb/s. At 10 Gb/s, integrated jitter of the Tx output and recovered clock is 360 fsrms and 758 fsrms, respectively

    Techniques for high-performance digital frequency synthesis and phase control

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 183-190).This thesis presents a 3.6-GHz, 500-kHz bandwidth digital [delta][sigma] frequency synthesizer architecture that leverages a recently invented noise-shaping time-to-digital converter (TDC) and an all-digital quantization noise cancellation technique to achieve excellent in-band and out-of-band phase noise, respectively. In addition, a passive digital-to-analog converter (DAC) structure is proposed as an efficient interface between the digital loop filter and a conventional hybrid voltage-controlled oscillator (VCO) to create a digitally-controlled oscillator (DCO). An asynchronous divider structure is presented which lowers the required TDC range and avoids the divide-value-dependent delay variation. The prototype is implemented in a 0.13-am CMOS process and its active area occupies 0.95 mm². Operating under 1.5 V, the core parts, excluding the VCO output buffer, dissipate 26 mA. Measured phase noise at 3.67 GHz achieves -108 dBc/Hz and -150 dBc/Hz at 400 kHz and 20 MHz, respectively. Integrated phase noise at this carrier frequency yields 204 fs of jitter (measured from 1 kHz to 40 MHz). In addition, a 3.2-Gb/s delay-locked loop (DLL) in a 0.18-[mu]m CMOS for chip-tochip communications is presented. By leveraging the fractional-N synthesizer technique, this architecture provides a digitally-controlled delay adjustment with a fine resolution and infinite range. The provided delay resolution is less sensitive to the process, voltage, and temperature variations than conventional techniques. A new [delta][sigma] modulator enables a compact and low-power implementation of this architecture. A simple bang-bang detector is used for phase detection. The prototype operates at a 1.8-V supply voltage with a current consumption of 55 mA. The phase resolution and differential rms clock jitter are 1.4 degrees and 3.6 ps, respectively.by Chun-Ming Hsu.Ph.D

    Techniques for Frequency Synthesizer-Based Transmitters.

    Full text link
    Internet of Things (IoT) devices are poised to be the largest market for the semiconductor industry. At the heart of a wireless IoT module is the radio and integral to any radio is the transmitter. Transmitters with low power consumption and small area are crucial to the ubiquity of IoT devices. The fairly simple modulation schemes used in IoT systems makes frequency synthesizer-based (also known as PLL-based) transmitters an ideal candidate for these devices. Because of the reduced number of analog blocks and the simple architecture, PLL-based transmitters lend themselves nicely to the highly integrated, low voltage nanometer digital CMOS processes of today. This thesis outlines techniques that not only reduce the power consumption and area, but also significantly improve the performance of PLL-based transmitters.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113385/1/mammad_1.pd

    Special Topics in Information Technology

    Get PDF
    This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2019-20 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists

    Techniques for Wideband All Digital Polar Transmission

    Get PDF
    abstract: Modern Communication systems are progressively moving towards all-digital transmitters (ADTs) due to their high efficiency and potentially large frequency range. While significant work has been done on individual blocks within the ADT, there are few to no full systems designs at this point in time. The goal of this work is to provide a set of multiple novel block architectures which will allow for greater cohesion between the various ADT blocks. Furthermore, the design of these architectures are expected to focus on the practicalities of system design, such as regulatory compliance, which here to date has largely been neglected by the academic community. Amongst these techniques are a novel upconverted phase modulation, polyphase harmonic cancellation, and process voltage and temperature (PVT) invariant Delta Sigma phase interpolation. It will be shown in this work that the implementation of the aforementioned architectures allows ADTs to be designed with state of the art size, power, and accuracy levels, all while maintaining PVT insensitivity. Due to the significant performance enhancement over previously published works, this work presents the first feasible ADT architecture suitable for widespread commercial deployment.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore