1,380 research outputs found

    REISCH: incorporating lightweight and reliable algorithms into healthcare applications of WSNs

    Get PDF
    Healthcare institutions require advanced technology to collect patients' data accurately and continuously. The tradition technologies still suffer from two problems: performance and security efficiency. The existing research has serious drawbacks when using public-key mechanisms such as digital signature algorithms. In this paper, we propose Reliable and Efficient Integrity Scheme for Data Collection in HWSN (REISCH) to alleviate these problems by using secure and lightweight signature algorithms. The results of the performance analysis indicate that our scheme provides high efficiency in data integration between sensors and server (saves more than 24% of alive sensors compared to traditional algorithms). Additionally, we use Automated Validation of Internet Security Protocols and Applications (AVISPA) to validate the security procedures in our scheme. Security analysis results confirm that REISCH is safe against some well-known attacks

    Deterministic Secure Positioning in Wireless Sensor Networks

    Get PDF
    Properly locating sensor nodes is an important building block for a large subset of wireless sensor networks (WSN) applications. As a result, the performance of the WSN degrades significantly when misbehaving nodes report false location and distance information in order to fake their actual location. In this paper we propose a general distributed deterministic protocol for accurate identification of faking sensors in a WSN. Our scheme does \emph{not} rely on a subset of \emph{trusted} nodes that are not allowed to misbehave and are known to every node in the network. Thus, any subset of nodes is allowed to try faking its position. As in previous approaches, our protocol is based on distance evaluation techniques developed for WSN. On the positive side, we show that when the received signal strength (RSS) technique is used, our protocol handles at most ⌊n2⌋−2\lfloor \frac{n}{2} \rfloor-2 faking sensors. Also, when the time of flight (ToF) technique is used, our protocol manages at most ⌊n2⌋−3\lfloor \frac{n}{2} \rfloor - 3 misbehaving sensors. On the negative side, we prove that no deterministic protocol can identify faking sensors if their number is ⌈n2⌉−1\lceil \frac{n}{2}\rceil -1. Thus our scheme is almost optimal with respect to the number of faking sensors. We discuss application of our technique in the trusted sensor model. More precisely our results can be used to minimize the number of trusted sensors that are needed to defeat faking ones

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    A Game Theoretical Analysis of Localization Security in Wireless Sensor Networks with Adversaries

    Get PDF
    Wireless Sensor Networks (WSN) support data collection and distributed data processing by means of very small sensing devices that are easy to tamper and cloning: therefore classical security solutions based on access control and strong authentication are difficult to deploy. In this paper we look at the problem of assessing security of node localization. In particular, we analyze the scenario in which Verifiable Multilateration (VM) is used to localize nodes and a malicious node (i.e., the adversary) try to masquerade as non-malicious. We resort to non-cooperative game theory and we model this scenario as a two-player game. We analyze the optimal players' strategy and we show that the VM is indeed a proper mechanism to reduce fake positions.Comment: International Congress on Ultra Modern Telecommunications and Control Systems 2010. (ICUMT'10

    An Outline of Security in Wireless Sensor Networks: Threats, Countermeasures and Implementations

    Full text link
    With the expansion of wireless sensor networks (WSNs), the need for securing the data flow through these networks is increasing. These sensor networks allow for easy-to-apply and flexible installations which have enabled them to be used for numerous applications. Due to these properties, they face distinct information security threats. Security of the data flowing through across networks provides the researchers with an interesting and intriguing potential for research. Design of these networks to ensure the protection of data faces the constraints of limited power and processing resources. We provide the basics of wireless sensor network security to help the researchers and engineers in better understanding of this applications field. In this chapter, we will provide the basics of information security with special emphasis on WSNs. The chapter will also give an overview of the information security requirements in these networks. Threats to the security of data in WSNs and some of their counter measures are also presented
    • …
    corecore