874 research outputs found

    Cryptanalysis of LU Decomposition-based Key Pre-distribution Scheme for Wireless Sensor Networks

    Get PDF
    S. J. Choi and H. Y. Youn proposed a key pre-distribution scheme for Wireless Sensor Networks based on LU decomposition of symmetric matrix, and later many researchers did works based on this scheme. Nevertheless, we find a mathematical relationship of L and U matrixes decomposed from symmetric matrix, by using which we can calculate one matrix from another regardless of their product -- the key matrix K. This relationship would profoundly harm the secure implementation of this decomposition scheme in the real world. In this paper, we first present and prove the mathematical theorem. Next we give samples to illustrate how to break the networks by using this theorem. Finally, we state the conclusion and some directions for improving the security of the key pre-distribution scheme

    Smart Security Implementation for Wireless Sensor Network Nodes

    Get PDF
    In the territory of concurrent systems such as wireless sensor networks (WSN), the computational nodes being used in wireless sensor networks faces challenges with security applications. Many different security protocols have been proposed that allow some form of security enhancement but not implemented. This article investigates and implements a number of smart security techniques appropriate for WSN nodes with various trade-off such as power consumption and scalability. We provide a brief survey of the major approaches to security prerogative and methods that could reduce if not eliminate algorithmic complexity and denial of service attacks to sensor nodes

    Enhanced Security Technique for Wireless Sensor Network Nodes

    Get PDF
    The lightweight computational nodes being used in WSN pose particular challenge for many security applications. This paper investigates a number of security techniques and novel implementations appropriate for WSN nodes, including various trade-offs such as implementation complexity, power dissipation, security flexibility and scalabilit

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    Fully Integrated Biochip Platforms for Advanced Healthcare

    Get PDF
    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications

    Privacy-aware Security Applications in the Era of Internet of Things

    Get PDF
    In this dissertation, we introduce several novel privacy-aware security applications. We split these contributions into three main categories: First, to strengthen the current authentication mechanisms, we designed two novel privacy-aware alternative complementary authentication mechanisms, Continuous Authentication (CA) and Multi-factor Authentication (MFA). Our first system is Wearable-assisted Continuous Authentication (WACA), where we used the sensor data collected from a wrist-worn device to authenticate users continuously. Then, we improved WACA by integrating a noise-tolerant template matching technique called NTT-Sec to make it privacy-aware as the collected data can be sensitive. We also designed a novel, lightweight, Privacy-aware Continuous Authentication (PACA) protocol. PACA is easily applicable to other biometric authentication mechanisms when feature vectors are represented as fixed-length real-valued vectors. In addition to CA, we also introduced a privacy-aware multi-factor authentication method, called PINTA. In PINTA, we used fuzzy hashing and homomorphic encryption mechanisms to protect the users\u27 sensitive profiles while providing privacy-preserving authentication. For the second privacy-aware contribution, we designed a multi-stage privacy attack to smart home users using the wireless network traffic generated during the communication of the devices. The attack works even on the encrypted data as it is only using the metadata of the network traffic. Moreover, we also designed a novel solution based on the generation of spoofed traffic. Finally, we introduced two privacy-aware secure data exchange mechanisms, which allow sharing the data between multiple parties (e.g., companies, hospitals) while preserving the privacy of the individual in the dataset. These mechanisms were realized with the combination of Secure Multiparty Computation (SMC) and Differential Privacy (DP) techniques. In addition, we designed a policy language, called Curie Policy Language (CPL), to handle the conflicting relationships among parties. The novel methods, attacks, and countermeasures in this dissertation were verified with theoretical analysis and extensive experiments with real devices and users. We believe that the research in this dissertation has far-reaching implications on privacy-aware alternative complementary authentication methods, smart home user privacy research, as well as the privacy-aware and secure data exchange methods
    • …
    corecore