1,363 research outputs found

    Improving Usability And Scalability Of Big Data Workflows In The Cloud

    Get PDF
    Big data workflows have recently emerged as the next generation of data-centric workflow technologies to address the five “V” challenges of big data: volume, variety, velocity, veracity, and value. More formally, a big data workflow is the computerized modeling and automation of a process consisting of a set of computational tasks and their data interdependencies to process and analyze data of ever increasing in scale, complexity, and rate of acquisition. The convergence of big data and workflows creates new challenges in workflow community. First, the variety of big data results in a need for integrating large number of remote Web services and other heterogeneous task components that can consume and produce data in various formats and models into a uniform and interoperable workflow. Existing approaches fall short in addressing the so-called shimming problem only in an adhoc manner and unable to provide a generic solution. We automatically insert a piece of code called shims or adaptors in order to resolve the data type mismatches. Second, the volume of big data results in a large number of datasets that needs to be queried and analyzed in an effective and personalized manner. Further, there is also a strong need for sharing, reusing, and repurposing existing tasks and workflows across different users and institutes. To overcome such limitations, we propose a folksonomy- based social workflow recommendation system to improve workflow design productivity and efficient dataset querying and analyzing. Third, the volume of big data results in the need to process and analyze data of ever increasing in scale, complexity, and rate of acquisition. But a scalable distributed data model is still missing that abstracts and automates data distribution, parallelism, and scalable processing. We propose a NoSQL collectional data model that addresses this limitation. Finally, the volume of big data combined with the unbound resource leasing capability foreseen in the cloud, facilitates data scientists to wring actionable insights from the data in a time and cost efficient manner. We propose BARENTS scheduler that supports high-performance workflow scheduling in a heterogeneous cloud-computing environment with a single objective to minimize the workflow makespan under a user provided budget constraint

    Scalable Architecture for Integrated Batch and Streaming Analysis of Big Data

    Get PDF
    Thesis (Ph.D.) - Indiana University, Computer Sciences, 2015As Big Data processing problems evolve, many modern applications demonstrate special characteristics. Data exists in the form of both large historical datasets and high-speed real-time streams, and many analysis pipelines require integrated parallel batch processing and stream processing. Despite the large size of the whole dataset, most analyses focus on specific subsets according to certain criteria. Correspondingly, integrated support for efficient queries and post- query analysis is required. To address the system-level requirements brought by such characteristics, this dissertation proposes a scalable architecture for integrated queries, batch analysis, and streaming analysis of Big Data in the cloud. We verify its effectiveness using a representative application domain - social media data analysis - and tackle related research challenges emerging from each module of the architecture by integrating and extending multiple state-of-the-art Big Data storage and processing systems. In the storage layer, we reveal that existing text indexing techniques do not work well for the unique queries of social data, which put constraints on both textual content and social context. To address this issue, we propose a flexible indexing framework over NoSQL databases to support fully customizable index structures, which can embed necessary social context information for efficient queries. The batch analysis module demonstrates that analysis workflows consist of multiple algorithms with different computation and communication patterns, which are suitable for different processing frameworks. To achieve efficient workflows, we build an integrated analysis stack based on YARN, and make novel use of customized indices in developing sophisticated analysis algorithms. In the streaming analysis module, the high-dimensional data representation of social media streams poses special challenges to the problem of parallel stream clustering. Due to the sparsity of the high-dimensional data, traditional synchronization method becomes expensive and severely impacts the scalability of the algorithm. Therefore, we design a novel strategy that broadcasts the incremental changes rather than the whole centroids of the clusters to achieve scalable parallel stream clustering algorithms. Performance tests using real applications show that our solutions for parallel data loading/indexing, queries, analysis tasks, and stream clustering all significantly outperform implementations using current state-of-the-art technologies

    Semantic Support for Log Analysis of Safety-Critical Embedded Systems

    Full text link
    Testing is a relevant activity for the development life-cycle of Safety Critical Embedded systems. In particular, much effort is spent for analysis and classification of test logs from SCADA subsystems, especially when failures occur. The human expertise is needful to understand the reasons of failures, for tracing back the errors, as well as to understand which requirements are affected by errors and which ones will be affected by eventual changes in the system design. Semantic techniques and full text search are used to support human experts for the analysis and classification of test logs, in order to speedup and improve the diagnosis phase. Moreover, retrieval of tests and requirements, which can be related to the current failure, is supported in order to allow the discovery of available alternatives and solutions for a better and faster investigation of the problem.Comment: EDCC-2014, BIG4CIP-2014, Embedded systems, testing, semantic discovery, ontology, big dat

    Orchestration of machine learning workflows on Internet of Things data

    Get PDF
    Applications empowered by machine learning (ML) and the Internet of Things (IoT) are changing the way people live and impacting a broad range of industries. However, creating and automating ML workflows at scale using real-world IoT data often leads to complex systems integration and production issues. Examples of challenges faced during the development of these ML applications include glue code, hidden dependencies, and data pipeline jungles. This research proposes the Machine Learning Framework for IoT data (ML4IoT), which is designed to orchestrate ML workflows to perform training and enable inference by ML models on IoT data. In the proposed framework, containerized microservices are used to automate the execution of tasks specified in ML workflows, which are defined through REST APIs. To address the problem of integrating big data tools and machine learning into a unified platform, the proposed framework enables the definition and execution of end-to-end ML workflows on large volumes of IoT data. In addition, to address the challenges of running multiple ML workflows in parallel, the ML4IoT has been designed to use container-based components that provide a convenient mechanism to enable the training and deployment of numerous ML models in parallel. Finally, to address the common production issues faced during the development of ML applications, the proposed framework used microservices architecture to bring flexibility, reusability, and extensibility to the framework. Through the experiments, we demonstrated the feasibility of the (ML4IoT), which managed to train and deploy predictive ML models in two types of IoT data. The obtained results suggested that the proposed framework can manage real-world IoT data, by providing elasticity to execute 32 ML workflows in parallel, which were used to train 128 ML models simultaneously. Also, results demonstrated that in the ML4IoT, the performance of rendering online predictions is not affected when 64 ML models are deployed concurrently to infer new information using online IoT data
    • …
    corecore