16 research outputs found

    Probabilistic Regular Expressions and MSO Logic on Finite Trees

    Get PDF

    Weighted Operator Precedence Languages

    Get PDF
    In the last years renewed investigation of operator precedence languages (OPL) led to discover important properties thereof: OPL are closed with respect to all major operations, are characterized, besides the original grammar family, in terms of an automata family (OPA) and an MSO logic; furthermore they significantly generalize the well-known visibly pushdown languages (VPL). In another area of research, quantitative models of systems are also greatly in demand. In this paper, we lay the foundation to marry these two research fields. We introduce weighted operator precedence automata and show how they are both strict extensions of OPA and weighted visibly pushdown automata. We prove a Nivat-like result which shows that quantitative OPL can be described by unweighted OPA and very particular weighted OPA. In a BĂĽchi-like theorem, we show that weighted OPA are expressively equivalent to a weighted MSO-logic for OPL

    A Unifying Survey on Weighted Logics and Weighted Automata: Core Weighted Logic: Minimal and Versatile Specification of Quantitative Properties

    Get PDF
    International audienceLogical formalisms equivalent to weighted automata have been the topic of numerous research papers in the recent years. It started with the seminal result by Droste and Gastin on weighted logics over semir-ings for words. It has been extended in two dimensions by many authors. First, the weight domain has been extended to valuation monoids, valuation structures, etc., to capture more quantitative properties. Along another dimension, different structures such as ranked or unranked trees, nested words, Mazurkiewiz traces, etc., have been considered. The long and involved proofs of equivalences in all these papers are implicitely based on the same core arguments. This article provides a meta-theorem which unifies these different approaches. Towards this, we first introduce a core weighted logic with a minimal number of features and a simplified syntax. Then, we define a new semantics for weighted automata and weighted logics in two phases—an abstract semantics based on multisets of weight structures (independent of particular weight domains) followed by a concrete semantics. We show at the level of the abstract semantics that weighted automata and core weighted logic have the same expressive power. We show how previous results can be recovered from our result by logical reasoning. In this paper, we prove the meta-theorem for words, ranked and unranked trees, showing the robustness of our approach

    Weighted Automata and Logics on Hierarchical Structures and Graphs

    Get PDF
    Formal language theory, originally developed to model and study our natural spoken languages, is nowadays also put to use in many other fields. These include, but are not limited to, the definition and visualization of programming languages and the examination and verification of algorithms and systems. Formal languages are instrumental in proving the correct behavior of automated systems, e.g., to avoid that a flight guidance system navigates two airplanes too close to each other. This vast field of applications is built upon a very well investigated and coherent theoretical basis. It is the goal of this dissertation to add to this theoretical foundation and to explore ways to make formal languages and their models more expressive. More specifically, we are interested in models that are able to model quantitative features of the behavior of systems. To this end, we define and characterize weighted automata over structures with hierarchical information and over graphs. In particular, we study infinite nested words, operator precedence languages, and finite and infinite graphs. We show BĂĽchi-like results connecting weighted automata and weighted monadic second order (MSO) logic for the respective classes of weighted languages over these structures. As special cases, we obtain BĂĽchi-type equivalence results known from the recent literature for weighted automata and weighted logics on words, trees, pictures, and nested words. Establishing such a general result for graphs has been an open problem for weighted logics for some time. We conjecture that our techniques can be applied to derive similar equivalence results in other contexts like traces, texts, and distributed systems

    Probabilistic Logic, Probabilistic Regular Expressions, and Constraint Temporal Logic

    Get PDF
    The classic theorems of BĂĽchi and Kleene state the expressive equivalence of finite automata to monadic second order logic and regular expressions, respectively. These fundamental results enjoy applications in nearly every field of theoretical computer science. Around the same time as BĂĽchi and Kleene, Rabin investigated probabilistic finite automata. This equally well established model has applications ranging from natural language processing to probabilistic model checking. Here, we give probabilistic extensions BĂĽchi\\\''s theorem and Kleene\\\''s theorem to the probabilistic setting. We obtain a probabilistic MSO logic by adding an expected second order quantifier. In the scope of this quantifier, membership is determined by a Bernoulli process. This approach turns out to be universal and is applicable for finite and infinite words as well as for finite trees. In order to prove the expressive equivalence of this probabilistic MSO logic to probabilistic automata, we show a Nivat-theorem, which decomposes a recognisable function into a regular language, homomorphisms, and a probability measure. For regular expressions, we build upon existing work to obtain probabilistic regular expressions on finite and infinite words. We show the expressive equivalence between these expressions and probabilistic Muller-automata. To handle Muller-acceptance conditions, we give a new construction from probabilistic regular expressions to Muller-automata. Concerning finite trees, we define probabilistic regular tree expressions using a new iteration operator, called infinity-iteration. Again, we show that these expressions are expressively equivalent to probabilistic tree automata. On a second track of our research we investigate Constraint LTL over multidimensional data words with data values from the infinite tree. Such LTL formulas are evaluated over infinite words, where every position possesses several data values from the infinite tree. Within Constraint LTL on can compare these values from different positions. We show that the model checking problem for this logic is PSPACE-complete via investigating the emptiness problem of Constraint BĂĽchi automata

    Logic and Automata

    Get PDF
    Mathematical logic and automata theory are two scientific disciplines with a fundamentally close relationship. The authors of Logic and Automata take the occasion of the sixtieth birthday of Wolfgang Thomas to present a tour d'horizon of automata theory and logic. The twenty papers in this volume cover many different facets of logic and automata theory, emphasizing the connections to other disciplines such as games, algorithms, and semigroup theory, as well as discussing current challenges in the field

    Regular Cost Functions, Part I: Logic and Algebra over Words

    Full text link
    The theory of regular cost functions is a quantitative extension to the classical notion of regularity. A cost function associates to each input a non-negative integer value (or infinity), as opposed to languages which only associate to each input the two values "inside" and "outside". This theory is a continuation of the works on distance automata and similar models. These models of automata have been successfully used for solving the star-height problem, the finite power property, the finite substitution problem, the relative inclusion star-height problem and the boundedness problem for monadic-second order logic over words. Our notion of regularity can be -- as in the classical theory of regular languages -- equivalently defined in terms of automata, expressions, algebraic recognisability, and by a variant of the monadic second-order logic. These equivalences are strict extensions of the corresponding classical results. The present paper introduces the cost monadic logic, the quantitative extension to the notion of monadic second-order logic we use, and show that some problems of existence of bounds are decidable for this logic. This is achieved by introducing the corresponding algebraic formalism: stabilisation monoids.Comment: 47 page

    Acta Cybernetica : Volume 22. Number 2.

    Get PDF

    Acta Cybernetica : Volume 23. Number 1.

    Get PDF

    Regular Cost Functions, Part I: Logic and Algebra over Words

    Full text link
    corecore