136,976 research outputs found

    Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis.

    Full text link
    The use of photochemical transformations is a powerful strategy that allows for the formation of a high degree of molecular complexity from relatively simple building blocks in a single step. A central feature of all light-promoted transformations is the involvement of electronically excited states, generated upon absorption of photons. This produces transient reactive intermediates and significantly alters the reactivity of a chemical compound. The input of energy provided by light thus offers a means to produce strained and unique target compounds that cannot be assembled using thermal protocols. This review aims at highlighting photochemical transformations as a tool for rapidly accessing structurally and stereochemically diverse scaffolds. Synthetic designs based on photochemical transformations have the potential to afford complex polycyclic carbon skeletons with impressive efficiency, which are of high value in total synthesis.R01 GM073855 - NIGMS NIH HHS; R01 GM096129 - NIGMS NIH HHS; R35 GM118173 - NIGMS NIH HH

    The impact of synthetic biology in chemical engineering - Educational issues

    Get PDF
    This paper describes the development of syntheticbiology as a distinct entity from current industrial biotechnology and the implications for a future based on its concepts. The role of the engineering design cycle, in syntheticbiology is established and the difficulties in making and exact analogy between the two emphasised. It is suggested that process engineers can offer experience in the application of syntheticbiology to the manufacture of products which should influence the approach of the synthetic biologist. The style of teaching for syntheticbiology appears to offer a new approach at undergraduate level and the challenges to the education of process engineers in this technology are raised. Possible routes to the development of syntheticbiology teaching are suggested

    Designing algorithms to aid discovery by chemical robots

    Get PDF
    Recently, automated robotic systems have become very efficient, thanks to improved coupling between sensor systems and algorithms, of which the latter have been gaining significance thanks to the increase in computing power over the past few decades. However, intelligent automated chemistry platforms for discovery orientated tasks need to be able to cope with the unknown, which is a profoundly hard problem. In this Outlook, we describe how recent advances in the design and application of algorithms, coupled with the increased amount of chemical data available, and automation and control systems may allow more productive chemical research and the development of chemical robots able to target discovery. This is shown through examples of workflow and data processing with automation and control, and through the use of both well-used and cutting-edge algorithms illustrated using recent studies in chemistry. Finally, several algorithms are presented in relation to chemical robots and chemical intelligence for knowledge discovery

    Dual-use Molecules from Yeast

    Get PDF
    This year the OPCW, the implementing body for the Chemical Weapons Convention, celebrates the 20th anniversary of entry into forces. In 2014, this organization examined the impact of new technologies in the field of chemical and biological weapons, in particular the “Convergence” of Chemistry and Biology. An OPCW report of the Scientific Advisory Group highlighted the importance of monitoring developments in science and technology: “New production processes, combined with developments in drug discovery and delivery, could be exploited in the development of new toxic chemicals that could be used as weapons.” 1 Indeed, since 2008, Synthetic Biology is monitored also by other international organizations, such as the Nonproliferation Export Control Regimes Australia Group

    Ancient and historical systems

    Get PDF

    Method for finding metabolic properties based on the general growth law. Liver examples. A General framework for biological modeling

    Full text link
    We propose a method for finding metabolic parameters of cells, organs and whole organisms, which is based on the earlier discovered general growth law. Based on the obtained results and analysis of available biological models, we propose a general framework for modeling biological phenomena and discuss how it can be used in Virtual Liver Network project. The foundational idea of the study is that growth of cells, organs, systems and whole organisms, besides biomolecular machinery, is influenced by biophysical mechanisms acting at different scale levels. In particular, the general growth law uniquely defines distribution of nutritional resources between maintenance needs and biomass synthesis at each phase of growth and at each scale level. We exemplify the approach considering metabolic properties of growing human and dog livers and liver transplants. A procedure for verification of obtained results has been introduced too. We found that two examined dogs have high metabolic rates consuming about 0.62 and 1 gram of nutrients per cubic centimeter of liver per day, and verified this using the proposed verification procedure. We also evaluated consumption rate of nutrients in human livers, determining it to be about 0.088 gram of nutrients per cubic centimeter of liver per day for males, and about 0.098 for females. This noticeable difference can be explained by evolutionary development, which required females to have greater liver processing capacity to support pregnancy. We also found how much nutrients go to biomass synthesis and maintenance at each phase of liver and liver transplant growth. Obtained results demonstrate that the proposed approach can be used for finding metabolic characteristics of cells, organs, and whole organisms, which can further serve as important inputs for many applications in biology (protein expression), biotechnology (synthesis of substances), and medicine.Comment: 20 pages, 6 figures, 4 table

    Rapid Assembly of the Salvileucalin B Norcaradiene Core

    Get PDF
    Preparation of the polycyclic core of the cytotoxic natural product salvileucalin B is described. The key feature of this synthetic strategy is a copper-catalyzed intramolecular arene cyclopropanation to provide the central norcaradiene. These studies lay the foundation for continued investigations toward an enantioselective total synthesis of 1
    corecore