246 research outputs found

    FFTPL: An Analytic Placement Algorithm Using Fast Fourier Transform for Density Equalization

    Full text link
    We propose a flat nonlinear placement algorithm FFTPL using fast Fourier transform for density equalization. The placement instance is modeled as an electrostatic system with the analogy of density cost to the potential energy. A well-defined Poisson's equation is proposed for gradient and cost computation. Our placer outperforms state-of-the-art placers with better solution quality and efficiency

    PeF: Poisson's Equation Based Large-Scale Fixed-Outline Floorplanning

    Full text link
    Floorplanning is the first stage of VLSI physical design. An effective floorplanning engine definitely has positive impact on chip design speed, quality and performance. In this paper, we present a novel mathematical model to characterize non-overlapping of modules, and propose a flat fixed-outline floorplanning algorithm based on the VLSI global placement approach using Poisson's equation. The algorithm consists of global floorplanning and legalization phases. In global floorplanning, we redefine the potential energy of each module based on the novel mathematical model for characterizing non-overlapping of modules and an analytical solution of Poisson's equation. In this scheme, the widths of soft modules appear as variables in the energy function and can be optimized. Moreover, we design a fast approximate computation scheme for partial derivatives of the potential energy. In legalization, based on the defined horizontal and vertical constraint graphs, we eliminate overlaps between modules remained after global floorplanning, by modifying relative positions of modules. Experiments on the MCNC, GSRC, HB+ and ami49\_x benchmarks show that, our algorithm improves the average wirelength by at least 2\% and 5\% on small and large scale benchmarks with certain whitespace, respectively, compared to state-of-the-art floorplanners

    Through-silicon-via-aware prediction and physical design for multi-granularity 3D integrated circuits

    Get PDF
    The main objective of this research is to predict the wirelength, area, delay, and power of multi-granularity three-dimensional integrated circuits (3D ICs), to develop physical design methodologies and algorithms for the design of multi-granularity 3D ICs, and to investigate the impact of through-silicon vias (TSVs) on the quality of 3D ICs. This dissertation supports these objectives by addressing six research topics. The first pertains to analytical models that predict the interconnects of multi-granularity 3D ICs, and the second focuses on the development of analytical models of the capacitive coupling of TSVs. The third and the fourth topics present design methodologies and algorithms for the design of gate- and block-level 3D ICs, and the fifth topic pertains to the impact of TSVs on the quality of 3D ICs. The final topic addresses topography variation in 3D ICs. The first section of this dissertation presents TSV-aware interconnect prediction models for multi-granularity 3D ICs. As previous interconnect prediction models for 3D ICs did not take TSV area into account, they were not capable of predicting many important characteristics of 3D ICs related to TSVs. This section will present several previous interconnect prediction models that have been improved so that the area occupied by TSVs is taken into account. The new models show numerous important predictions such as the existence of the number of TSVs minimizing wirelength. The second section presents fast estimation of capacitive coupling of TSVs and wires. Since TSV-to-TSV and TSV-to-wire coupling capacitance is dependent on their relative locations, fast estimation of the coupling capacitance of a TSV is essential for the timing optimization of 3D ICs. Simulation results show that the analytical models presented in this section are sufficiently accurate for use at various design steps that require the computation of TSV capacitance. The third and fourth sections present design methodologies and algorithms for gate- and block-level 3D ICs. One of the biggest differences in the design of 2D and 3D ICs is that the latter requires TSV insertion. Since no widely-accepted design methodology designates when, where, and how TSVs are inserted, this work develops and presents several design methodologies for gate- and block-level 3D ICs and physical design algorithms supporting them. Simulation results based on GDSII-level layouts validate the design methodologies and present evidence of their effectiveness. The fifth section explores the impact of TSVs on the quality of 3D ICs. As TSVs become smaller, devices are shrinking, too. Since the relative size of TSVs and devices is more critical to the quality of 3D ICs than the absolute size of TSVs and devices, TSVs and devices should be taken into account in the study of the impact of TSVs on the quality of 3D ICs. In this section, current and future TSVs and devices are combined to produce 3D IC layouts and the impact of TSVs on the quality of 3D ICs is investigated. The final section investigates topography variation in 3D ICs. Since landing pads fabricated in the bottommost metal layer are attached to TSVs, they are larger than TSVs, so they could result in serious topography variation. Therefore, topography variation, especially in the bottommost metal layer, is investigated and two layout optimization techniques are applied to a global placement algorithm that minimizes the topography variation of the bottommost metal layer of 3D ICs.PhDCommittee Chair: Lim, Sung Kyu; Committee Member: Bakir, Muhannad; Committee Member: Kim, Hyesoon; Committee Member: Lee, Hsien-Hsin Sean; Committee Member: Mukhopadhyay, Saiba

    Analytical Solution of Poisson's Equation with Application to VLSI Global Placement

    Full text link
    Poisson's equation has been used in VLSI global placement for describing the potential field caused by a given charge density distribution. Unlike previous global placement methods that solve Poisson's equation numerically, in this paper, we provide an analytical solution of the equation to calculate the potential energy of an electrostatic system. The analytical solution is derived based on the separation of variables method and an exact density function to model the block distribution in the placement region, which is an infinite series and converges absolutely. Using the analytical solution, we give a fast computation scheme of Poisson's equation and develop an effective and efficient global placement algorithm called Pplace. Experimental results show that our Pplace achieves smaller placement wirelength than ePlace and NTUplace3. With the pervasive applications of Poisson's equation in scientific fields, in particular, our effective, efficient, and robust computation scheme for its analytical solution can provide substantial impacts on these fields
    • …
    corecore