8 research outputs found

    Image Restoration Using One-Dimensional Sobolev Norm Profiles of Noise and Texture

    Get PDF
    This work is devoted to image restoration (denoising and deblurring) by variational models. As in our prior work [Inverse Probl. Imaging, 3 (2009), pp. 43-68], the image (f) over tilde to be restored is assumed to be the sum of a cartoon component u (a function of bounded variation) and a texture component v (an oscillatory function in a Sobolev space with negative degree of differentiability). In order to separate noise from texture in a blurred noisy textured image, we need to collect some information that helps distinguish noise, especially Gaussian noise, from texture. We know that homogeneous Sobolev spaces of negative differentiability help capture oscillations in images very well; however, these spaces do not directly provide clear distinction between texture and noise, which is also highly oscillatory, especially when the blurring effect is noticeable. Here, we propose a new method for distinguishing noise from texture by considering a family of Sobolev norms corresponding to noise and texture. It turns out that the two Sobolev norm profiles for texture and noise are different, and this enables us to better separate noise from texture during the deblurring process.open0

    영상 복원 문제의 변분법적 접근

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 수리과학부, 2013. 2. 강명주.Image restoration has been an active research area in image processing and computer vision during the past several decades. We explore variational partial differential equations (PDE) models in image restoration problem. We start our discussion by reviewing classical models, by which the works of this dissertation are highly motivated. The content of the dissertation is divided into two main subjects. First topic is on image denoising, where we propose non-convex hybrid total variation model, and then we apply iterative reweighted algorithm to solve the proposed model. Second topic is on image decomposition, in which we separate an image into structural component and oscillatory component using local gradient constraint.Abstract i 1 Introduction 1 1.1 Image restoration 2 1.2 Brief overview of the dissertation 3 2 Previous works 4 2.1 Image denoising 4 2.1.1 Fundamental model 4 2.1.2 Higher order model 7 2.1.3 Hybrid model 9 2.1.4 Non-convex model 12 2.2 Image decomposition 22 2.2.1 Meyers model 23 2.2.2 Nonlinear filter 24 3 Non-convex hybrid TV for image denoising 28 3.1 Variational model with non-convex hybrid TV 29 3.1.1 Non-convex TV model and non-convex HOTV model 29 3.1.2 The Proposed model: Non-convex hybrid TV model 31 3.2 Iterative reweighted hybrid Total Variation algorithm 33 3.3 Numerical experiments 35 3.3.1 Parameter values 37 3.3.2 Comparison between the non-convex TV model and the non-convex HOTV model 38 3.3.3 Comparison with other non-convex higher order regularizers 40 3.3.4 Comparison between two non-convex hybrid TV models 42 3.3.5 Comparison with Krishnan et al. [39] 43 3.3.6 Comparison with state-of-the-art 44 4 Image decomposition 59 4.1 Local gradient constraint 61 4.1.1 Texture estimator 62 4.2 The proposed model 65 4.2.1 Algorithm : Anisotropic TV-L2 67 4.2.2 Algorithm : Isotropic TV-L2 69 4.2.3 Algorithm : Isotropic TV-L1 71 4.3 Numerical experiments and discussion 72 5 Conclusion and future works 80 Abstract (in Korean) 92Docto

    Large Scale Inverse Problems

    Get PDF
    This book is thesecond volume of a three volume series recording the "Radon Special Semester 2011 on Multiscale Simulation &amp Analysis in Energy and the Environment" that took placein Linz, Austria, October 3-7, 2011. This volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications. The solution of inverse problems is fundamental to a wide variety of applications such as weather forecasting, medical tomography, and oil exploration. Regularisation techniques are needed to ensure solutions of sufficient quality to be useful, and soundly theoretically based. This book addresses the common techniques required for all the applications, and is thus truly interdisciplinary. This collection of survey articles focusses on the large inverse problems commonly arising in simulation and forecasting in the earth sciences

    Textural Difference Enhancement based on Image Component Analysis

    Get PDF
    In this thesis, we propose a novel image enhancement method to magnify the textural differences in the images with respect to human visual characteristics. The method is intended to be a preprocessing step to improve the performance of the texture-based image segmentation algorithms. We propose to calculate the six Tamura's texture features (coarseness, contrast, directionality, line-likeness, regularity and roughness) in novel measurements. Each feature follows its original understanding of the certain texture characteristic, but is measured by some local low-level features, e.g., direction of the local edges, dynamic range of the local pixel intensities, kurtosis and skewness of the local image histogram. A discriminant texture feature selection method based on principal component analysis (PCA) is then proposed to find the most representative characteristics in describing textual differences in the image. We decompose the image into pairwise components representing the texture characteristics strongly and weakly, respectively. A set of wavelet-based soft thresholding methods are proposed as the dictionaries of morphological component analysis (MCA) to sparsely highlight the characteristics strongly and weakly from the image. The wavelet-based thresholding methods are proposed in pair, therefore each of the resulted pairwise components can exhibit one certain characteristic either strongly or weakly. We propose various wavelet-based manipulation methods to enhance the components separately. For each component representing a certain texture characteristic, a non-linear function is proposed to manipulate the wavelet coefficients of the component so that the component is enhanced with the corresponding characteristic accentuated independently while having little effect on other characteristics. Furthermore, the above three methods are combined into a uniform framework of image enhancement. Firstly, the texture characteristics differentiating different textures in the image are found. Secondly, the image is decomposed into components exhibiting these texture characteristics respectively. Thirdly, each component is manipulated to accentuate the corresponding texture characteristics exhibited there. After re-combining these manipulated components, the image is enhanced with the textural differences magnified with respect to the selected texture characteristics. The proposed textural differences enhancement method is used prior to both grayscale and colour image segmentation algorithms. The convincing results of improving the performance of different segmentation algorithms prove the potential of the proposed textural difference enhancement method

    Textural Difference Enhancement based on Image Component Analysis

    Get PDF
    In this thesis, we propose a novel image enhancement method to magnify the textural differences in the images with respect to human visual characteristics. The method is intended to be a preprocessing step to improve the performance of the texture-based image segmentation algorithms. We propose to calculate the six Tamura's texture features (coarseness, contrast, directionality, line-likeness, regularity and roughness) in novel measurements. Each feature follows its original understanding of the certain texture characteristic, but is measured by some local low-level features, e.g., direction of the local edges, dynamic range of the local pixel intensities, kurtosis and skewness of the local image histogram. A discriminant texture feature selection method based on principal component analysis (PCA) is then proposed to find the most representative characteristics in describing textual differences in the image. We decompose the image into pairwise components representing the texture characteristics strongly and weakly, respectively. A set of wavelet-based soft thresholding methods are proposed as the dictionaries of morphological component analysis (MCA) to sparsely highlight the characteristics strongly and weakly from the image. The wavelet-based thresholding methods are proposed in pair, therefore each of the resulted pairwise components can exhibit one certain characteristic either strongly or weakly. We propose various wavelet-based manipulation methods to enhance the components separately. For each component representing a certain texture characteristic, a non-linear function is proposed to manipulate the wavelet coefficients of the component so that the component is enhanced with the corresponding characteristic accentuated independently while having little effect on other characteristics. Furthermore, the above three methods are combined into a uniform framework of image enhancement. Firstly, the texture characteristics differentiating different textures in the image are found. Secondly, the image is decomposed into components exhibiting these texture characteristics respectively. Thirdly, each component is manipulated to accentuate the corresponding texture characteristics exhibited there. After re-combining these manipulated components, the image is enhanced with the textural differences magnified with respect to the selected texture characteristics. The proposed textural differences enhancement method is used prior to both grayscale and colour image segmentation algorithms. The convincing results of improving the performance of different segmentation algorithms prove the potential of the proposed textural difference enhancement method

    Denoising and enhancement of digital images : variational methods, integrodifferential equations, and wavelets

    Get PDF
    The topics of this thesis are methods for denoising, enhancement, and simplification of digital image data. Special emphasis lies on the relations and structural similarities between several classes of methods which are motivated from different contexts. In particular, one can distinguish the methods treated in this thesis in three classes: For variational approaches and partial differential equations, the notion of the derivative is the tool of choice to model regularity of the data and the desired result. A general framework for such approaches is proposed that involve all partial derivatives of a prescribed order and experimentally are capable of leading to piecewise polynomial approximations of the given data. The second class of methods uses wavelets to represent the data which makes it possible to understand the filtering as very simple pointwise application of a nonlinear function. To view these wavelets as derivatives of smoothing kernels is the basis for relating these methods to integrodifferential equations which are investigated here. In the third case, values of the image in a neighbourhood are averaged where the weights of this averaging can be adapted respecting different criteria. By refinement of the pixel grid and transfer to scaling limits, connections to partial differential equations become visible here, too. They are described in the framework explained before. Numerical aspects of the simplification of images are presented with respect to the NDS energy function, a unifying approach that allows to model many of the aforementioned methods. The behaviour of the filtering methods is documented with numerical examples.Gegenstand der vorliegenden Arbeit sind Verfahren zum Entrauschen, qualitativen Verbessern und Vereinfachen digitaler Bilddaten. Besonderes Augenmerk liegt dabei auf den Beziehungen und der strukturellen Ähnlichkeit zwischen unterschiedlich motivierten Verfahrensklassen. Insbesondere lassen sich die hier behandelten Methoden in drei Klassen einordnen: Bei den Variationsansätzen und partiellen Differentialgleichungen steht der Begriff der Ableitung im Mittelpunkt, um Regularität der Daten und des gewünschten Resultats zu modellieren. Hier wird ein einheitlicher Rahmen für solche Ansätze angegeben, die alle partiellen Ableitungen einer vorgegebenen Ordnung involvieren und experimentell auf stückweise polynomielle Approximationen der gegebenen Daten führen können. Die zweite Klasse von Methoden nutzt Wavelets zur Repräsentation von Daten, mit deren Hilfe sich Filterung als sehr einfache punktweise Anwendung einer nichtlinearen Funktion verstehen lässt. Diese Wavelets als Ableitungen von Glättungskernen aufzufassen bildet die Grundlage für die hier untersuchte Verbindung dieser Verfahren zu Integrodifferentialgleichungen. Im dritten Fall werden Werte des Bildes in einer Nachbarschaft gemittelt, wobei die Gewichtung bei dieser Mittelung adaptiv nach verschiedenen Kriterien angepasst werden kann. Durch Verfeinern des Pixelgitters und Übergang zu Skalierungslimites werden auch hier Verbindungen zu partiellen Differentialgleichungen sichtbar, die in den vorher dargestellten Rahmen eingeordnet werden. Numerische Aspekte beim Vereinfachen von Bildern werden anhand der NDS-Energiefunktion dargestellt, eines einheitlichen Ansatzes, mit dessen Hilfe sich viele der vorgenannten Methoden realisieren lassen. Das Verhalten der einzelnen Filtermethoden wird dabei jeweils durch numerische Beispiele dokumentiert

    Modern Regularization Methods for Inverse Problems

    Get PDF
    Regularization methods are a key tool in the solution of inverse problems. They are used to introduce prior knowledge and allow a robust approximation of ill-posed (pseudo-) inverses. In the last two decades interest has shifted from linear to nonlinear regularization methods, even for linear inverse problems. The aim of this paper is to provide a reasonably comprehensive overview of this shift towards modern nonlinear regularization methods, including their analysis, applications and issues for future research. In particular we will discuss variational methods and techniques derived from them, since they have attracted much recent interest and link to other fields, such as image processing and compressed sensing. We further point to developments related to statistical inverse problems, multiscale decompositions and learning theory.Leverhulme Trust Early Career Fellowship ‘Learning from mistakes: a supervised feedback-loop for imaging applications’ Isaac Newton Trust Cantab Capital Institute for the Mathematics of Information ERC Grant EU FP 7 - ERC Consolidator Grant 615216 LifeInverse German Ministry for Science and Education (BMBF) project MED4D EPSRC grant EP/K032208/
    corecore