941 research outputs found

    Modifying the Yamaguchi Four-Component Decomposition Scattering Powers Using a Stochastic Distance

    Full text link
    Model-based decompositions have gained considerable attention after the initial work of Freeman and Durden. This decomposition which assumes the target to be reflection symmetric was later relaxed in the Yamaguchi et al. decomposition with the addition of the helix parameter. Since then many decomposition have been proposed where either the scattering model was modified to fit the data or the coherency matrix representing the second order statistics of the full polarimetric data is rotated to fit the scattering model. In this paper we propose to modify the Yamaguchi four-component decomposition (Y4O) scattering powers using the concept of statistical information theory for matrices. In order to achieve this modification we propose a method to estimate the polarization orientation angle (OA) from full-polarimetric SAR images using the Hellinger distance. In this method, the OA is estimated by maximizing the Hellinger distance between the un-rotated and the rotated T33T_{33} and the T22T_{22} components of the coherency matrix [T]\mathbf{[T]}. Then, the powers of the Yamaguchi four-component model-based decomposition (Y4O) are modified using the maximum relative stochastic distance between the T33T_{33} and the T22T_{22} components of the coherency matrix at the estimated OA. The results show that the overall double-bounce powers over rotated urban areas have significantly improved with the reduction of volume powers. The percentage of pixels with negative powers have also decreased from the Y4O decomposition. The proposed method is both qualitatively and quantitatively compared with the results obtained from the Y4O and the Y4R decompositions for a Radarsat-2 C-band San-Francisco dataset and an UAVSAR L-band Hayward dataset.Comment: Accepted for publication in IEEE J-STARS (IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

    Improvement of PolSAR Decomposition Scattering Powers Using a Relative Decorrelation Measure

    Full text link
    In this letter, a methodology is proposed to improve the scattering powers obtained from model-based decomposition using Polarimetric Synthetic Aperture Radar (PolSAR) data. The novelty of this approach lies in utilizing the intrinsic information in the off-diagonal elements of the 3×\times3 coherency matrix T\mathbf{T} represented in the form of complex correlation coefficients. Two complex correlation coefficients are computed between co-polarization and cross-polarization components of the Pauli scattering vector. The difference between modulus of complex correlation coefficients corresponding to Topt\mathbf{T}^{\mathrm{opt}} (i.e. the degree of polarization (DOP) optimized coherency matrix), and T\mathbf{T} (original) matrices is obtained. Then a suitable scaling is performed using fractions \emph{i.e.,} (Tiiopt/i=13Tiiopt)(T_{ii}^{\mathrm{opt}}/\sum\limits_{i=1}^{3}T_{ii}^{\mathrm{opt}}) obtained from the diagonal elements of the Topt\mathbf{T}^{\mathrm{opt}} matrix. Thereafter, these new quantities are used in modifying the Yamaguchi 4-component scattering powers obtained from Topt\mathbf{T}^{\mathrm{opt}}. To corroborate the fact that these quantities have physical relevance, a quantitative analysis of these for the L-band AIRSAR San Francisco and the L-band Kyoto images is illustrated. Finally, the scattering powers obtained from the proposed methodology are compared with the corresponding powers obtained from the Yamaguchi \emph{et. al.,} 4-component (Y4O) decomposition and the Yamaguchi \emph{et. al.,} 4-component Rotated (Y4R) decomposition for the same data sets. The proportion of negative power pixels is also computed. The results show an improvement on all these attributes by using the proposed methodology.Comment: Accepted for publication in Remote Sensing Letter

    Modelling PolSAR Scattering Signatures at Long Wavelengths of Glacier Ice Volumes

    Get PDF
    The crucial role of cryosphere for understanding the global climate change has been widely recognized in recent decades [1]. Glaciers and ice sheets are the main components of the cryosphere and constitute the basic reservoir of fresh water for high-latitudes and many densely populated areas at mid and low latitudes. The need of information on large scale and the inaccessibility of polar regions qualify synthetic aperture radar (SAR) sensors for glaciological applications. At long wavelengths (e.g. P- and L- band), SAR systems are capable to penetrate several tens of meters deep into the ice body. Consequently, they are sensitive to the glacier surface as well as to sub-surface ice structures. However, the complexity of the scattering mechanisms, occurring within the glacier ice volume, turns the interpretation of SAR scattering signatures into a challenge and large uncertainties remain in estimating reliably glacier accumulation rates, ice thickness, subsurface structures and discharge rates. In literature great attention has been given to model-based decomposition techniques of polarimetric SAR (PolSAR) data. The first model-based decomposition for glacier ice was proposed in [2] as an adaptation and extension of the well-known Freeman-Durden model [3]. Despite this approach was able to interpret many effects in the experimental data, it could not explain, for instance, co-polarization phase differences. The objective of this study is to develop a novel polarimetric model that attempts to explain PolSAR signatures of glacier ice. A new volume scattering component from a cloud of oriented particles will be presented. In particular, air and atmospheric gases inclusions, typically present in ice volumes [4], are modeled as oblate spheroidal particles, mainly horizontally oriented and embedded in a glacier ice background. Since the model has to account for an oriented ice volume, the anisotropic nature of the ice medium has to be incorporated. This phenomenon, neglected in [2], leads to different refraction indices, i.e. differential propagation velocities (phase differences) and losses of the electromagnetic wave along different polarizations [5]. Furthermore, the introduction of additional scattering components (e.g. from the glacier surface) will extend and complete the polarimetric model. For a first quality assessment, modeled polarimetric signatures are compared to airborne fully polarimetric SAR data at L- and P-band, collected over the Austfonna ice-cap, in Svalbard, Norway, by DLR’s E-SAR system within the ICESAR 2007 campaign

    A deep-neural-network-based hybrid method for semi-supervised classification of polarimetric SAR data

    Get PDF
    This paper proposes a deep-neural-network-based semi-supervised method for polarimetric synthetic aperture radar (PolSAR) data classification. The proposed method focuses on achieving a well-trained deep neural network (DNN) when the amount of the labeled samples is limited. In the proposed method, the probability vectors, where each entry indicates the probability of a sample associated with a category, are first evaluated for the unlabeled samples, leading to an augmented training set. With this augmented training set, the parameters in the DNN are learned by solving the optimization problem, where the log-likelihood cost function and the class probability vectors are used. To alleviate the “salt-and-pepper” appearance in the classification results of PolSAR images, the spatial interdependencies are incorporated by introducing a Markov random field (MRF) prior in the prediction step. The experimental results on two realistic PolSAR images demonstrate that the proposed method effectively incorporates the spatial interdependencies and achieves the good classification accuracy with a limited number of labeled samples

    On the use of the l(2)-norm for texture analysis of polarimetric SAR data

    Get PDF
    In this paper, the use of the l2-norm, or Span, of the scattering vectors is suggested for texture analysis of polarimetric synthetic aperture radar (SAR) data, with the benefits that we need neither an analysis of the polarimetric channels separately nor a filtering of the data to analyze the statistics. Based on the product model, the distribution of the l2-norm is studied. Closed expressions of the probability density functions under the assumptions of several texture distributions are provided. To utilize the statistical properties of the l2-norm, quantities including normalized moments and log-cumulants are derived, along with corresponding estimators and estimation variances. Results on both simulated and real SAR data show that the use of statistics based on the l2-norm brings advantages in several aspects with respect to the normalized intensity moments and matrix variate log-cumulants.Peer ReviewedPostprint (published version

    A Study on Utilization of Polarimetric SAR Data in Planning a Smart City

    Get PDF
    AbstractIn the present world, there is a huge requirement for a truly efficient city not only operating in an integrated mode, but also to optimize the resources of each system to have better eco-friendly livelihood. Currently, this novel concept has led to the establishment of smart city with integration among informational and operational efficiency. With recent advances in remote sensing especially in the field of Polarimetric Synthetic Aperture Radar (SAR) data, using suitable polarimetric target decomposition techniques, data can be classified for further utilization in remote sensing applications. As a part of this exploration, a study has been taken to understand the utilisation of polarimetric data in building a smart city by exploiting the available resources in a given urban area. Different types of polarimetric decomposition techniques are applied on the data along with polarimetric speckle filters where classification of targets is performed based on the scattering mechanism of the polarized wave with each target in the scene. Encouraging preliminary results were obtained in the study using polarimetric SAR data adding another dimension in planning a smart city
    corecore