834 research outputs found

    Optimal Control to Limit the Propagation Effect of a Virus Outbreak on a Network

    Get PDF
    The aim of this paper is to propose an optimal control strategy to face the propagation effects of a virus outbreak on a network; a recently proposed model is integrated and analysed. Depending on the specific model caracteristics, the epidemic spread could be more or less dangerous leading to a virus free or to a virus equilibrium. Two possible controls are introduced: a test on the computers connected in a network and the antivirus. In a condition of limited resources the best allocation strategy should allow to reduce the spread of the virus as soon as possible

    Evolutionary Poisson Games for Controlling Large Population Behaviors

    Full text link
    Emerging applications in engineering such as crowd-sourcing and (mis)information propagation involve a large population of heterogeneous users or agents in a complex network who strategically make dynamic decisions. In this work, we establish an evolutionary Poisson game framework to capture the random, dynamic and heterogeneous interactions of agents in a holistic fashion, and design mechanisms to control their behaviors to achieve a system-wide objective. We use the antivirus protection challenge in cyber security to motivate the framework, where each user in the network can choose whether or not to adopt the software. We introduce the notion of evolutionary Poisson stable equilibrium for the game, and show its existence and uniqueness. Online algorithms are developed using the techniques of stochastic approximation coupled with the population dynamics, and they are shown to converge to the optimal solution of the controller problem. Numerical examples are used to illustrate and corroborate our results

    Effects of Resource Limitations and Cost Influences on Computer Virus Epidemic Dynamics and Tipping Points

    Get PDF
    One of the most important assessment indicators of computer virus infections is epidemic tipping point. Although many researchers have focused on the effects of scale-free network power-law connectivity distributions on computer virus epidemic dynamics and tipping points, few have comprehensively considered resource limitations and costs. Our goals for this paper are to show that (a) opposed to the current consensus, a significant epidemic tipping point does exist when resource limitations and costs are considered and (b) it is possible to control the spread of a computer virus in a scale-free network if resources are restricted and if costs associated with infection events are significantly increased

    Malware Detection and Prevention

    Get PDF
    Malware first appeared in 1971, before broadband internet even existed. The first variations began with people just testing what they could do and were not malicious. Eventually, that time came to an end once cybercriminals began to realize that they could wreak havoc and profit from creating malware. Almost at the same time, cybersecurity was created to help combat these viruses and malicious attacks by cybercriminals. This project paper will dive into the technical issues that arise from malware detection and prevention. It starts with defining malware and goes over the history of malware from its birth to today. Then this paper will list all of the different variations of malware and the processes they execute to break into systems and propagate. Next, it goes over the different variations of malware defenses, starting with antivirus software. The paper will define antivirus software and how it functions as well as provide a history. Then it will dive into cryptographic defenses to define, provide history, and explain the methods employed by cryptography. Finally, it will go over firewalls explaining how they function and their history. Malware will never cease to exist, so it is highly important to consider what computer and network technologies you should employ to protect yourself. This paper isn’t just to dismiss malware but to help people understand better how these technologies can work to prevent malware attacks both during and before the attack even happens. Key Words: Malware, Antivirus Software, Cryptography, Firewall, Key, Cipher, Gatewa
    • …
    corecore