2,057 research outputs found

    Parametric Analysis of Flexible Logic Control Model

    Get PDF
    Based on deep analysis about the essential relation between two input variables of normal two-dimensional fuzzy controller, we used universal combinatorial operation model to describe the logic relationship and gave a flexible logic control method to realize the effective control for complex system. In practical control application, how to determine the general correlation coefficient of flexible logic control model is a problem for further studies. First, the conventional universal combinatorial operation model has been limited in the interval [0,1]. Consequently, this paper studies a kind of universal combinatorial operation model based on the interval [a,b]. And some important theorems are given and proved, which provide a foundation for the flexible logic control method. For dealing reasonably with the complex relations of every factor in complex system, a kind of universal combinatorial operation model with unequal weights is put forward. Then, this paper has carried out the parametric analysis of flexible logic control model. And some research results have been given, which have important directive to determine the values of the general correlation coefficients in practical control application

    A geometric approach to free variable loop equations in discretized theories of 2D gravity

    Full text link
    We present a self-contained analysis of theories of discrete 2D gravity coupled to matter, using geometric methods to derive equations for generating functions in terms of free (noncommuting) variables. For the class of discrete gravity theories which correspond to matrix models, our method is a generalization of the technique of Schwinger-Dyson equations and is closely related to recent work describing the master field in terms of noncommuting variables; the important differences are that we derive a single equation for the generating function using purely graphical arguments, and that the approach is applicable to a broader class of theories than those described by matrix models. Several example applications are given here, including theories of gravity coupled to a single Ising spin (c=1/2c = 1/2), multiple Ising spins (c=k/2c = k/2), a general class of two-matrix models which includes the Ising theory and its dual, the three-state Potts model, and a dually weighted graph model which does not admit a simple description in terms of matrix models.Comment: 40 pages, 8 figures, LaTeX; final publication versio

    Matrix product formula for Macdonald polynomials

    Get PDF
    We derive a matrix product formula for symmetric Macdonald polynomials. Our results are obtained by constructing polynomial solutions of deformed Knizhnik--Zamolodchikov equations, which arise by considering representations of the Zamolodchikov--Faddeev and Yang--Baxter algebras in terms of tt-deformed bosonic operators. These solutions form a basis of the ring of polynomials in nn variables, whose elements are indexed by compositions. For weakly increasing compositions (anti-dominant weights), these basis elements coincide with non-symmetric Macdonald polynomials. Our formulas imply a natural combinatorial interpretation in terms of solvable lattice models. They also imply that normalisations of stationary states of multi-species exclusion processes are obtained as Macdonald polynomials at q=1q=1.Comment: 27 pages; typos corrected, references added and some better conventions adopted in v

    Distributed Spectral Efficiency Maximization in Full-Duplex Cellular Networks

    Full text link
    Three-node full-duplex is a promising new transmission mode between a full-duplex capable wireless node and two other wireless nodes that use half-duplex transmission and reception respectively. Although three-node full-duplex transmissions can increase the spectral efficiency without requiring full-duplex capability of user devices, inter-node interference - in addition to the inherent self-interference - can severely degrade the performance. Therefore, as methods that provide effective self-interference mitigation evolve, the management of inter-node interference is becoming increasingly important. This paper considers a cellular system in which a full-duplex capable base station serves a set of half-duplex capable users. As the spectral efficiencies achieved by the uplink and downlink transmissions are inherently intertwined, the objective is to device channel assignment and power control algorithms that maximize the weighted sum of the uplink-downlink transmissions. To this end a distributed auction based channel assignment algorithm is proposed, in which the scheduled uplink users and the base station jointly determine the set of downlink users for full-duplex transmission. Realistic system simulations indicate that the spectral efficiency can be up to 89% better than using the traditional half-duplex mode. Furthermore, when the self-interference cancelling level is high, the impact of the user-to-user interference is severe unless properly managed.Comment: 7 pages, 3 figures, accepted in IEEE ICC 2016 - Workshop on Novel Medium Access and Resource Allocation for 5G Network

    Renyi entropies for classical stringnet models

    Full text link
    In quantum mechanics, stringnet condensed states - a family of prototypical states exhibiting non-trivial topological order - can be classified via their long-range entanglement properties, in particular topological corrections to the prevalent area law of the entanglement entropy. Here we consider classical analogs of such stringnet models whose partition function is given by an equal-weight superposition of classical stringnet configurations. Our analysis of the Shannon and Renyi entropies for a bipartition of a given system reveals that the prevalent volume law for these classical entropies is augmented by subleading topological corrections that are intimately linked to the anyonic theories underlying the construction of the classical models. We determine the universal values of these topological corrections for a number of underlying anyonic theories including su(2)_k, su(N)_1, and su(N)_2 theories

    Exact solution of the 2d2d dimer model: Corner free energy, correlation functions and combinatorics

    Get PDF
    In this work, some classical results of the pfaffian theory of the dimer model based on the work of Kasteleyn, Fisher and Temperley are introduced in a fermionic framework. Then we shall detail the bosonic formulation of the model {\it via} the so-called height mapping and the nature of boundary conditions is unravelled. The complete and detailed fermionic solution of the dimer model on the square lattice with an arbitrary number of monomers is presented, and finite size effect analysis is performed to study surface and corner effects, leading to the extrapolation of the central charge of the model. The solution allows for exact calculations of monomer and dimer correlation functions in the discrete level and the scaling behavior can be inferred in order to find the set of scaling dimensions and compare to the bosonic theory which predict particular features concerning corner behaviors. Finally, some combinatorial and numerical properties of partition functions with boundary monomers are discussed, proved and checked with enumeration algorithms.Comment: Final version to be published in Nuclear Physics B (53 pages and a lot of figures
    corecore