186,308 research outputs found

    Autonomy Infused Teleoperation with Application to BCI Manipulation

    Full text link
    Robot teleoperation systems face a common set of challenges including latency, low-dimensional user commands, and asymmetric control inputs. User control with Brain-Computer Interfaces (BCIs) exacerbates these problems through especially noisy and erratic low-dimensional motion commands due to the difficulty in decoding neural activity. We introduce a general framework to address these challenges through a combination of computer vision, user intent inference, and arbitration between the human input and autonomous control schemes. Adjustable levels of assistance allow the system to balance the operator's capabilities and feelings of comfort and control while compensating for a task's difficulty. We present experimental results demonstrating significant performance improvement using the shared-control assistance framework on adapted rehabilitation benchmarks with two subjects implanted with intracortical brain-computer interfaces controlling a seven degree-of-freedom robotic manipulator as a prosthetic. Our results further indicate that shared assistance mitigates perceived user difficulty and even enables successful performance on previously infeasible tasks. We showcase the extensibility of our architecture with applications to quality-of-life tasks such as opening a door, pouring liquids from containers, and manipulation with novel objects in densely cluttered environments

    A Model-Driven Engineering Approach for ROS using Ontological Semantics

    Full text link
    This paper presents a novel ontology-driven software engineering approach for the development of industrial robotics control software. It introduces the ReApp architecture that synthesizes model-driven engineering with semantic technologies to facilitate the development and reuse of ROS-based components and applications. In ReApp, we show how different ontological classification systems for hardware, software, and capabilities help developers in discovering suitable software components for their tasks and in applying them correctly. The proposed model-driven tooling enables developers to work at higher abstraction levels and fosters automatic code generation. It is underpinned by ontologies to minimize discontinuities in the development workflow, with an integrated development environment presenting a seamless interface to the user. First results show the viability and synergy of the selected approach when searching for or developing software with reuse in mind.Comment: Presented at DSLRob 2015 (arXiv:1601.00877), Stefan Zander, Georg Heppner, Georg Neugschwandtner, Ramez Awad, Marc Essinger and Nadia Ahmed: A Model-Driven Engineering Approach for ROS using Ontological Semantic

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    Full Potential of Future Robotaxis Achievable with Trip-Based Subsidies and Fees Applied to the For-Hire Vehicles of Today

    Get PDF
    As described by Grush and Niles in their textbook, The End of Driving: Transportation Systems and Public Policy Planning for Autonomous Vehicles, there are two distinct market states for the future of automobility as vehicles become increasingly automated. The first, Market-1, is comprised of all vehicles that are manufactured and sold to private owners and used as household vehicles. This private consumer fleet will—through automated driver assistance systems (ADAS)—be increasingly capable of hands-off operation, even self-driving in certain environments such as limited-access expressways. The second category, Market-2, represents all the vehicles made expressly for the service market, i.e., roboshuttles and robotaxis, meant to be eventually driverless in prepared, defined areas and streets. Ford, GM, Lyft, Uber, Waymo, and dozens of other companies assert that they are preparing vehicles for Market-2. The main thesis in this perspective is that a productive, efficient system of on-demand Market-2 mobility can evolve from incentive-based governance—here termed “harmonization management.” This approach strikes a contrast with rigid regulation of a style seen with big city taxicabs and based on using constrained service classifications or per-vehicle medallion approaches. This essay recommends that transportation authorities set up systems of robust pricing signals—incentives and fees—delivered through a universal, mandatory system providing efficient, equitable distribution of these signals

    Design and fabrication of an end effector

    Get PDF
    The construction is described of a prototype mechanical hand or 'end effector' for use on a remotely controlled robot, but with possible application as a prosthetic device. An analysis of hand motions is reported, from which it is concluded that the two most important manipulations (apart from grasps) are to be able to pick up a tool and draw it into a nested grip against the palm, and to be able to hold a pistol-grip tool such as an electric drill and pull the trigger. A model was tested and found capable of both these operations
    • …
    corecore