11,967 research outputs found

    Generalized (c,d)-entropy and aging random walks

    Get PDF
    Complex systems are often inherently non-ergodic and non-Markovian for which Shannon entropy loses its applicability. In particular accelerating, path-dependent, and aging random walks offer an intuitive picture for these non-ergodic and non-Markovian systems. It was shown that the entropy of non-ergodic systems can still be derived from three of the Shannon-Khinchin axioms, and by violating the fourth -- the so-called composition axiom. The corresponding entropy is of the form Sc,diΓ(1+d,1clnpi)S_{c,d} \sim \sum_i \Gamma(1+d,1-c\ln p_i) and depends on two system-specific scaling exponents, cc and dd. This entropy contains many recently proposed entropy functionals as special cases, including Shannon and Tsallis entropy. It was shown that this entropy is relevant for a special class of non-Markovian random walks. In this work we generalize these walks to a much wider class of stochastic systems that can be characterized as `aging' systems. These are systems whose transition rates between states are path- and time-dependent. We show that for particular aging walks Sc,dS_{c,d} is again the correct extensive entropy. Before the central part of the paper we review the concept of (c,d)(c,d)-entropy in a self-contained way.Comment: 8 pages, 5 eps figures. arXiv admin note: substantial text overlap with arXiv:1104.207

    Time and M-theory

    Get PDF
    We review our recent proposal for a background independent formulation of a holographic theory of quantum gravity. The present review incorporates the necessary background material on geometry of canonical quantum theory, holography and spacetime thermodynamics, Matrix theory, as well as our specific proposal for a dynamical theory of geometric quantum mechanics, as applied to Matrix theory. At the heart of this review is a new analysis of the conceptual problem of time and the closely related and phenomenologically relevant problem of vacuum energy in quantum gravity. We also present a discussion of some observational implications of this new viewpoint on the problem of vacuum energy.Comment: 86 pages, 5 figures, LaTeX, typos fixed, references added, and Sec. 6.2 revised; invited review for Int. J. Mod. Phys.

    Robustness and Regularization of Support Vector Machines

    Full text link
    We consider regularized support vector machines (SVMs) and show that they are precisely equivalent to a new robust optimization formulation. We show that this equivalence of robust optimization and regularization has implications for both algorithms, and analysis. In terms of algorithms, the equivalence suggests more general SVM-like algorithms for classification that explicitly build in protection to noise, and at the same time control overfitting. On the analysis front, the equivalence of robustness and regularization, provides a robust optimization interpretation for the success of regularized SVMs. We use the this new robustness interpretation of SVMs to give a new proof of consistency of (kernelized) SVMs, thus establishing robustness as the reason regularized SVMs generalize well

    Asymptotic equivalence of probability measures and stochastic processes

    Full text link
    Let PnP_n and QnQ_n be two probability measures representing two different probabilistic models of some system (e.g., an nn-particle equilibrium system, a set of random graphs with nn vertices, or a stochastic process evolving over a time nn) and let MnM_n be a random variable representing a 'macrostate' or 'global observable' of that system. We provide sufficient conditions, based on the Radon-Nikodym derivative of PnP_n and QnQ_n, for the set of typical values of MnM_n obtained relative to PnP_n to be the same as the set of typical values obtained relative to QnQ_n in the limit nn\rightarrow\infty. This extends to general probability measures and stochastic processes the well-known thermodynamic-limit equivalence of the microcanonical and canonical ensembles, related mathematically to the asymptotic equivalence of conditional and exponentially-tilted measures. In this more general sense, two probability measures that are asymptotically equivalent predict the same typical or macroscopic properties of the system they are meant to model.Comment: v1: 16 pages. v2: 17 pages, precisions, examples and references added. v3: Minor typos corrected. Close to published versio

    Variational Principle of Bogoliubov and Generalized Mean Fields in Many-Particle Interacting Systems

    Full text link
    The approach to the theory of many-particle interacting systems from a unified standpoint, based on the variational principle for free energy is reviewed. A systematic discussion is given of the approximate free energies of complex statistical systems. The analysis is centered around the variational principle of N. N. Bogoliubov for free energy in the context of its applications to various problems of statistical mechanics and condensed matter physics. The review presents a terse discussion of selected works carried out over the past few decades on the theory of many-particle interacting systems in terms of the variational inequalities. It is the purpose of this paper to discuss some of the general principles which form the mathematical background to this approach, and to establish a connection of the variational technique with other methods, such as the method of the mean (or self-consistent) field in the many-body problem, in which the effect of all the other particles on any given particle is approximated by a single averaged effect, thus reducing a many-body problem to a single-body problem. The method is illustrated by applying it to various systems of many-particle interacting systems, such as Ising and Heisenberg models, superconducting and superfluid systems, strongly correlated systems, etc. It seems likely that these technical advances in the many-body problem will be useful in suggesting new methods for treating and understanding many-particle interacting systems. This work proposes a new, general and pedagogical presentation, intended both for those who are interested in basic aspects, and for those who are interested in concrete applications.Comment: 60 pages, Refs.25

    A note on conditional versus joint unconditional weak convergence in bootstrap consistency results

    Full text link
    The consistency of a bootstrap or resampling scheme is classically validated by weak convergence of conditional laws. However, when working with stochastic processes in the space of bounded functions and their weak convergence in the Hoffmann-J{\o}rgensen sense, an obstacle occurs: due to possible non-measurability, neither laws nor conditional laws are well-defined. Starting from an equivalent formulation of weak convergence based on the bounded Lipschitz metric, a classical circumvent is to formulate bootstrap consistency in terms of the latter distance between what might be called a \emph{conditional law} of the (non-measurable) bootstrap process and the law of the limiting process. The main contribution of this note is to provide an equivalent formulation of bootstrap consistency in the space of bounded functions which is more intuitive and easy to work with. Essentially, the equivalent formulation consists of (unconditional) weak convergence of the original process jointly with two bootstrap replicates. As a by-product, we provide two equivalent formulations of bootstrap consistency for statistics taking values in separable metric spaces: the first in terms of (unconditional) weak convergence of the statistic jointly with its bootstrap replicates, the second in terms of convergence in probability of the empirical distribution function of the bootstrap replicates. Finally, the asymptotic validity of bootstrap-based confidence intervals and tests is briefly revisited, with particular emphasis on the, in practice unavoidable, Monte Carlo approximation of conditional quantiles.Comment: 21 pages, 1 Figur
    corecore