1,335 research outputs found

    A new type of eye movement model based on recurrent neural networks for simulating the gaze behavior of human reading.

    Get PDF
    Traditional eye movement models are based on psychological assumptions and empirical data that are not able to simulate eye movement on previously unseen text data. To address this problem, a new type of eye movement model is presented and tested in this paper. In contrast to conventional psychology-based eye movement models, ours is based on a recurrent neural network (RNN) to generate a gaze point prediction sequence, by using the combination of convolutional neural networks (CNN), bidirectional long short-term memory networks (LSTM), and conditional random fields (CRF). The model uses the eye movement data of a reader reading some texts as training data to predict the eye movements of the same reader reading a previously unseen text. A theoretical analysis of the model is presented to show its excellent convergence performance. Experimental results are then presented to demonstrate that the proposed model can achieve similar prediction accuracy while requiring fewer features than current machine learning models

    A Neural Model of How the Brain Represents and Compares Multi-Digit Numbers: Spatial and Categorical Processes

    Full text link
    Both animals and humans are capable of representing and comparing numerical quantities, but only humans seem to have evolved multi-digit place-value number systems. This article develops a neural model, called the Spatial Number Network, or SpaN model, which predicts how these shared numerical capabilities are computed using a spatial representation of number quantities in the Where cortical processing stream, notably the Inferior Parietal Cortex. Multi-digit numerical representations that obey a place-value principle are proposed to arise through learned interactions between categorical language representations in the What cortical processing stream and the Where spatial representation. It is proposed that learned semantic categories that symbolize separate digits, as well as place markers like "tens," "hundreds," "thousands," etc., are associated through learning with the corresponding spatial locations of the Where representation, leading to a place-value number system as an emergent property of What-Where information fusion. The model quantitatively simulates error rates in quantification and numerical comparison tasks, and reaction times for number priming and numerical assessment and comparison tasks. In the Where cortical process, it is proposed that transient responses to inputs are integrated before they activate an ordered spatial map that selectively responds to the number of events in a sequence. Neural mechanisms are defined which give rise to an ordered spatial numerical map ordering and Weber law characteristics as emergent properties. The dynamics of numerical comparison are encoded in activity pattern changes within this spatial map. Such changes cause a "directional comparison wave" whose properties mimic data about numerical comparison. These model mechanisms are variants of neural mechanisms that have elsewhere been used to explain data about motion perception, attention shifts, and target tracking. Thus, the present model suggests how numerical representations may have emerged as specializations of more primitive mechanisms in the cortical Where processing stream. The model's What-Where interactions can explain human psychophysical data, such as error rates and reaction times, about multi-digit (base 10) numerical stimuli, and describe how such a competence can develop through learning. The SpaN model and its explanatory range arc compared with other models of numerical representation.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333

    Reading as Active Sensing: A Computational Model of Gaze Planning in Word Recognition

    Get PDF
    We offer a computational model of gaze planning during reading that consists of two main components: a lexical representation network, acquiring lexical representations from input texts (a subset of the Italian CHILDES database), and a gaze planner, designed to recognize written words by mapping strings of characters onto lexical representations. The model implements an active sensing strategy that selects which characters of the input string are to be fixated, depending on the predictions dynamically made by the lexical representation network. We analyze the developmental trajectory of the system in performing the word recognition task as a function of both increasing lexical competence, and correspondingly increasing lexical prediction ability. We conclude by discussing how our approach can be scaled up in the context of an active sensing strategy applied to a robotic setting

    Annotated Bibliography: Anticipation

    Get PDF

    Eye-Tracking Signals Based Affective Classification Employing Deep Gradient Convolutional Neural Networks

    Get PDF
    Utilizing biomedical signals as a basis to calculate the human affective states is an essential issue of affective computing (AC). With the in-depth research on affective signals, the combination of multi-model cognition and physiological indicators, the establishment of a dynamic and complete database, and the addition of high-tech innovative products become recent trends in AC. This research aims to develop a deep gradient convolutional neural network (DGCNN) for classifying affection by using an eye-tracking signals. General signal process tools and pre-processing methods were applied firstly, such as Kalman filter, windowing with hamming, short-time Fourier transform (SIFT), and fast Fourier transform (FTT). Secondly, the eye-moving and tracking signals were converted into images. A convolutional neural networks-based training structure was subsequently applied; the experimental dataset was acquired by an eye-tracking device by assigning four affective stimuli (nervous, calm, happy, and sad) of 16 participants. Finally, the performance of DGCNN was compared with a decision tree (DT), Bayesian Gaussian model (BGM), and k-nearest neighbor (KNN) by using indices of true positive rate (TPR) and false negative rate (FPR). Customizing mini-batch, loss, learning rate, and gradients definition for the training structure of the deep neural network was also deployed finally. The predictive classification matrix showed the effectiveness of the proposed method for eye moving and tracking signals, which performs more than 87.2% inaccuracy. This research provided a feasible way to find more natural human-computer interaction through eye moving and tracking signals and has potential application on the affective production design process

    The Mechanics of Embodiment: A Dialogue on Embodiment and Computational Modeling

    Get PDF
    Embodied theories are increasingly challenging traditional views of cognition by arguing that conceptual representations that constitute our knowledge are grounded in sensory and motor experiences, and processed at this sensorimotor level, rather than being represented and processed abstractly in an amodal conceptual system. Given the established empirical foundation, and the relatively underspecified theories to date, many researchers are extremely interested in embodied cognition but are clamouring for more mechanistic implementations. What is needed at this stage is a push toward explicit computational models that implement sensory-motor grounding as intrinsic to cognitive processes. In this article, six authors from varying backgrounds and approaches address issues concerning the construction of embodied computational models, and illustrate what they view as the critical current and next steps toward mechanistic theories of embodiment. The first part has the form of a dialogue between two fictional characters: Ernest, the �experimenter�, and Mary, the �computational modeller�. The dialogue consists of an interactive sequence of questions, requests for clarification, challenges, and (tentative) answers, and touches the most important aspects of grounded theories that should inform computational modeling and, conversely, the impact that computational modeling could have on embodied theories. The second part of the article discusses the most important open challenges for embodied computational modelling

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Modelling multimodal language processing

    Get PDF
    corecore