701 research outputs found

    Regression between headmaster leadership, task load and job satisfaction of special education integration program teacher

    Get PDF
    Managing school is a daunting task for a headmaster. This responsibility is exacerbated when it involves the Special Education Integration Program (SEIP). This situation requires appropriate and effective leadership in addressing some of the issues that are currently taking place at SEIP such as task load and job satisfaction. This study aimed to identify the influence of headmaster leadership on task load and teacher job satisfaction at SEIP. This quantitative study was conducted by distributing 400 sets of randomized questionnaires to SEIP teachers across Malaysia through google form. The data obtained were then analyzed using Structural Equation Modeling (SEM) and AMOS software. The results show that there is a significant positive effect on the leadership of the headmaster and the task load of the teacher. Likewise, the construct of task load and teacher job satisfaction has a significant positive effect. However, for the construct of headmaster leadership and teacher job satisfaction, there was no significant positive relationship. This finding is very important as a reference to the school administration re-evaluating their leadership so as not to burden SEIP teachers and to give them job satisfaction. In addition, the findings of this study can also serve as a guide for SEIP teachers to increase awareness of the importance of managing their tasks. This study also focused on education leadership in general and more specifically on special education leadership

    Intelligent controllers for velocity tracking of two wheeled inverted pendulum mobile robot

    Get PDF
    Velocity tracking is one of the important objectives of vehicle, machines and mobile robots. A two wheeled inverted pendulum (TWIP) is a class of mobile robot that is open loop unstable with high nonlinearities which makes it difficult to control its velocity because of its nature of pitch falling if left unattended. In this work, three soft computing techniques were proposed to track a desired velocity of the TWIP. Fuzzy Logic Control (FLC), Neural Network Inverse Model control (NN) and an Adaptive Neuro-Fuzzy Inference System (ANFIS) were designed and simulated on the TWIP model. All the three controllers have shown practically good performance in tracking the desired speed and keeping the robot in upright position and ANFIS has shown slightly better performance than FLC, while NN consumes more energy

    Adaptive Neuro-Fuzzy Control Approach for a Single Inverted Pendulum System

    Get PDF
    The inverted pendulum is an under-actuated and nonlinear system, which is also unstable. It is a single-input double-output system, where only one output is directly actuated. This paper investigates a single intelligent control system using an adaptive neuro-fuzzy inference system (ANFIS) to stabilize the inverted pendulum system while tracking the desired position. The non-linear inverted pendulum system was modelled and built using MATLAB Simulink. An adaptive neuro-fuzzy logic controller was implemented and its performance was compared with a Sugeno-fuzzy inference system in both simulation and real experiment. The ANFIS controller could reach its desired new destination in 1.5 s and could stabilize the entire system in 2.2 s in the simulation, while in the experiment it took 1.7 s to reach stability. Results from the simulation and experiment showed that ANFIS had better performance compared to the Sugeno-fuzzy controller as it provided faster and smoother response and much less steady-state error

    Control of a modified double inverted pendulum using machine learning based model predictive control

    Get PDF
    Abstract: A machine learning-based controller (MLC) has been developed for a modified double inverted pendulum on a cart (MDIPC). First, the governing differential equations of the system are derived using the Lagrangian method. Then, a dataset is generated to train and test the machine learning-based models of the plant. Different types of machine learning models such as artificial neural networks (ANN), deep neural networks (DNN), long-short-term memory neural networks (LSTM), gated recurrent unit (GRU), and recurrent neural networks (RNN) are employed to capture the system’s dynamics. DNN and LSTM are selected due to their superior performance compared to other models. Finally, different variations of the Model Predictive Controller (MPC) are designed, and their performance is evaluated in terms of running time and tracking error. The proposed control methods are shown to have an advantage over the conventional nonlinear and linear model predictive control methods in simulation.Communication présentée lors du congrès international tenu conjointement par Canadian Society for Mechanical Engineering (CSME) et Computational Fluid Dynamics Society of Canada (CFD Canada), à l’Université de Sherbrooke (Québec), du 28 au 31 mai 2023

    Development of deep reinforcement learning for inverted pendulum

    Get PDF
    This paper presents a modification of the deep Q-network (DQN) in deep reinforcement learning to control the angle of the inverted pendulum (IP). The original DQN method often uses two actions related to two force states like constant negative and positive force values which apply to the cart of IP to maintain the angle between the pendulum and the Y-axis. Due to the changing of too much value of force, the IP may make some oscillation which makes the performance system could be declined. Thus, a modified DQN algorithm is developed based on neural network structure to make a range of force selections for IP to improve the performance of IP. To prove our algorithm, the OpenAI/Gym and Keras libraries are used to develop DQN. All results showed that our proposed controller has higher performance than the original DQN and could be applied to a nonlinear system

    Self-tuning run-time reconfigurable PID controller

    Get PDF
    Digital PID control algorithm is one of the most commonly used algorithms in the control systems area. This algorithm is very well known, it is simple, easily implementable in the computer control systems and most of all its operation is very predictable. Thus PID control has got well known impact on the control system behavior. However, in its simple form the controller have no reconfiguration support. In a case of the controlled system substantial changes (or the whole control environment, in the wider aspect, for example if the disturbances characteristics would change) it is not possible to make the PID controller robust enough. In this paper a new structure of digital PID controller is proposed, where the policy-based computing is used to equip the controller with the ability to adjust it's behavior according to the environmental changes. Application to the electro-oil evaporator which is a part of distillation installation is used to show the new controller structure in operation
    corecore