796 research outputs found

    On the Use of Historical Flights for the Urban Growth Analysis of Cities Through Time: The Case Study of Avila (Spain)

    Get PDF
    17 p.Historical aerial images are a unique and relatively unexplored means of deriving spatio-temporal information for scenes and landscapes. Such historical imagery can be combined with photointerpretation and image-based 3D modelling techniques, providing the fourth dimension of time to 3D geometrical representations. This allows urban planners, historians, and other specialists to identify, describe, and analyse changes in scenes and landscapes. Urban growth has an important impact on the sustainable development of cities. An important step for the analysis of urban growth is the identification of different urban sectors. To this end, this paper proposes a methodology for the 4D urban growth analysis of cities through time using a free and open source software developed by the authors. This approach uses the latest advances in photogrammetry, including the so-called incremental Structure from Motion, to evaluate the urbanistic changes of a city by means of confronting two-point clouds from different eras. The objectives of this paper are twofold: (i) first, the processing of historical aerial images using modern photogrammetric techniques; (ii) second, deriving spatio-temporal information for urban cities, offering a method for researchers to identify changes over time. In order to validate this method, the urban growth of the city of Avila between 1956 and 2017 was assessed taking the historical American flight of 1956 and the digital aerial flight of 2017. The results were statistically assessed according to georeferencing quality, confirming that the approach developed can be used to support urban growth analysis through time and providing relevant data in 2D and 3DS

    Automation aspects for the georeferencing of photogrammetric aerial image archives in forested scenes

    Get PDF
    Photogrammetric aerial film image archives are scanned into digital form in many countries. These data sets offer an interesting source of information for scientists from different disciplines. The objective of this investigation was to contribute to the automation of a generation of 3D environmental model time series when using small-scale airborne image archives, especially in forested scenes. Furthermore, we investigated the usability of dense digital surface models (DSMs) generated using these data sets as well as the uncertainty propagation of the DSMs. A key element in the automation is georeferencing. It is obvious that for images captured years apart, it is essential to find ground reference locations that have changed as little as possible. We studied a 68-year-long aerial image time series in a Finnish Karelian forestland. The quality of candidate ground locations was evaluated by comparing digital DSMs created from the images to an airborne laser scanning (ALS)-originated reference DSM. The quality statistics of DSMs were consistent with the expectations; the estimated median root mean squared error for height varied between 0.3 and 2 m, indicating a photogrammetric modelling error of 0.1 parts per thousand with respect to flying height for data sets collected since the 1980s, and 0.2 parts per thousand for older data sets. The results show that of the studied land cover classes, "peatland without trees" changed the least over time and is one of the most promising candidates to serve as a location for automatic ground control measurement. Our results also highlight some potential challenges in the process as well as possible solutions. Our results indicate that using modern photogrammetric techniques, it is possible to reconstruct 3D environmental model time series using photogrammetric image archives in a highly automated way.Peer reviewe

    An approach for real world data modelling with the 3D terrestrial laser scanner for built environment

    Get PDF
    Capturing and modelling 3D information of the built environment is a big challenge. A number of techniques and technologies are now in use. These include EDM, GPS, and photogrammetric application, remote sensing and traditional building surveying applications. However, use of these technologies cannot be practical and efficient in regard to time, cost and accuracy. Furthermore, a multi disciplinary knowledge base, created from the studies and research about the regeneration aspects is fundamental: historical, architectural, archeologically, environmental, social, economic, etc. In order to have an adequate diagnosis of regeneration, it is necessary to describe buildings and surroundings by means of documentation and plans. However, at this point in time the foregoing is considerably far removed from the real situation, since more often than not it is extremely difficult to obtain full documentation and cartography, of an acceptable quality, since the material, constructive pathologies and systems are often insufficient or deficient (flat that simply reflects levels, isolated photographs,..). Sometimes the information in reality exists, but this fact is not known, or it is not easily accessible, leading to the unnecessary duplication of efforts and resources. In this paper, we discussed 3D laser scanning technology, which can acquire high density point data in an accurate, fast way. Besides, the scanner can digitize all the 3D information concerned with a real world object such as buildings, trees and terrain down to millimetre detail Therefore, it can provide benefits for refurbishment process in regeneration in the Built Environment and it can be the potential solution to overcome the challenges above. The paper introduce an approach for scanning buildings, processing the point cloud raw data, and a modelling approach for CAD extraction and building objects classification by a pattern matching approach in IFC (Industry Foundation Classes) format. The approach presented in this paper from an undertaken research can lead to parametric design and Building Information Modelling (BIM) for existing structures. Two case studies are introduced to demonstrate the use of laser scanner technology in the Built Environment. These case studies are the Jactin House Building in East Manchester and the Peel building in the campus of University Salford. Through these case studies, while use of laser scanners are explained, the integration of it with various technologies and systems are also explored for professionals in Built Environmen

    Multiplatform-SfM and TLS Data Fusion for Monitoring Agricultural Terraces in Complex Topographic and Landcover Conditions

    Get PDF
    Agricultural terraced landscapes, which are important historical heritage sites (e.g., UNESCO or Globally Important Agricultural Heritage Systems (GIAHS) sites) are under threat from increased soil degradation due to climate change and land abandonment. Remote sensing can assist in the assessment and monitoring of such cultural ecosystem services. However, due to the limitations imposed by rugged topography and the occurrence of vegetation, the application of a single high-resolution topography (HRT) technique is challenging in these particular agricultural environments. Therefore, data fusion of HRT techniques (terrestrial laser scanning (TLS) and aerial/terrestrial structure from motion (SfM)) was tested for the first time in this context (terraces), to the best of our knowledge, to overcome specific detection problems such as the complex topographic and landcover conditions of the terrace systems. SfM–TLS data fusion methodology was trialed in order to produce very high-resolution digital terrain models (DTMs) of two agricultural terrace areas, both characterized by the presence of vegetation that covers parts of the subvertical surfaces, complex morphology, and inaccessible areas. In the unreachable areas, it was necessary to find effective solutions to carry out HRT surveys; therefore, we tested the direct georeferencing (DG) method, exploiting onboard multifrequency GNSS receivers for unmanned aerial vehicles (UAVs) and postprocessing kinematic (PPK) data. The results showed that the fusion of data based on different methods and acquisition platforms is required to obtain accurate DTMs that reflect the real surface roughness of terrace systems without gaps in data. Moreover, in inaccessible or hazardous terrains, a combination of direct and indirect georeferencing was a useful solution to reduce the substantial inconvenience and cost of ground control point (GCP) placement. We show that in order to obtain a precise data fusion in these complex conditions, it is essential to utilize a complete and specific workflow. This workflow must incorporate all data merging issues and landcover condition problems, encompassing the survey planning step, the coregistration process, and the error analysis of the outputs. The high-resolution DTMs realized can provide a starting point for land degradation process assessment of these agriculture environments and supplies useful information to stakeholders for better management and protection of such important heritage landscapes

    Remote sensing and data fusion of cultural and physical landscapes

    Get PDF
    This dissertation is written as part of the three-article option offered by the Geography Department at UNC Greensboro. Each article addresses specific research issues within Remote Sensing, Photogrammetry, and three-dimensional modeling related structural and subsurface remote sensing of historic cultural landscapes. The articles submitted in this dissertation are both separate study sites and research questions, but the unifying theme of geographic research methods applies throughout. The first article is titled Terrestrial Lidar and GPR Investigations into the Third Line of Battle at Guilford Courthouse National Military Park, Guilford County, North Carolina is published in the book Digital Methods and Remote Sensing in Archaeology: Archaeology in the Age of Sensing. Forte, Maurizio, Campana, Stefano R.L. (Eds.) 2016. The results of the research demonstrate the successful exportation of GPR data into three-dimensional point clouds. Subsequently, the converted GPR points in conjunction with the TLS were explored to aid in the identification of the colonial subsurface. The second article submitted for consideration is titled “Three-Dimensional Modeling using Terrestrial LiDAR, Unmanned Aerial Vehicles, and Digital Cameras at House in the Horseshoe State Historic Site, Sanford, North Carolina.” There are two different research components to this study, modeling a structure and the landscape. The structure modeling section compares three different remote sensing approaches to the capture and three-dimensional model creation of a historic building. A detailed comparison is made between the photogrammetric models generated from digital camera photography, a terrestrial laser scanner (TLS) and an unmanned aerial vehicle (UAS). The final article, “Geophysical Investigations at the Harper House Bentonville Battlefield, NC State Historic Site” submitted focuses on the Harper House located in at the Bentonville Civil War battlefield. UNCG conducted a geophysical survey using a ground penetrating radar and gradiometer. The findings from the data were used to determine and pinpoint areas of interest for subsequent excavation

    Modelling the Seventies. Image-Based Modelling to Investigate Landscape Change in a Mediterranean Mountain Area

    Get PDF
    Historical aerial imagery can be used to investigate geomorphological change over time, which can inform research about the preservation and visibility of the archaeological record, as well as heritage management. This paper presents a composite Image-Based Modelling workflow to generate 3D models, historical orthophotos, and historical digital elevation models from images from the 1970s. The main challenge was the lack of high-resolution recent digital elevation models and ground control points. Therefore, spatial data from various sources had to be combined. To assess the accuracy of the final 3D model, the RMSE was calculated. While the workflow appears effective, the low accuracy of the initial data limits the usefulness of the model for the study of geomorphological change. However, it can be implemented to aid sample area selection when preparing archaeological fieldwork, or, when working with different survey datasets, signal areas with a high bias risk resulting from post-depositional processes

    Retracing the 1910 Carruthers Royal Geographical Society Expedition to the Turgen Mountains of Mongolia – Reconstruction of a Century of Glacial Change

    Get PDF
    The Turgen Mountains lie in northwestern Mongolia, roughly 80 kilometers south of the Russian border. The area was visited in 1910 by a Royal Geographical Society (RGS) expedition led by Douglas Carruthers. They undertook an extensive survey of the range and produced a detailed topographic map. They also documented the extent of the glaciers with photographs. This modern study consisted of three phases. The first step was to procure the historical documents from the RGS in London, including copies of the photos, journal entries, and the map. Field work in Mongolia entailed traveling to the remote study site and retracing portions the 1910 expedition. Camera locations were matched to the historical photographs and repeat images taken. In addition, the termini of the two main glacial lobes were surveyed by GPS. Finally, spatial analysis was conducted in the computer laboratory using a GIS to generate a „historic‟ elevation model from the 1910 map and compare it to a modern DEM generated from SRTM data. Map analysis software was employed to evaluate cartometric accuracy of the 1910 map against modern Russian topographic sheets. The results of the DEM and map analysis were then validated using the field GPS data and remotely sensed imagery to quantitatively describe the changes in the glacial system. The repeat photography was analyzed using photogrammetric techniques to measure glacier changes. Also, a custom cartographic product was produced in the style of the 1910 Carruthers map. It displays the extent of the glaciers in 2010 and the locations of repeat photography stations for future expeditions. Placing the results of this study alongside previous work paints a clear picture of the Turgen glacial regime over the last century. The results suggest that while the snow and ice volume on the summits appears to be intact, lower elevation glaciers show significant ablation. This study successively demonstrates the utility of using historic expedition documents to extend the modern record of glacial change
    • …
    corecore