14 research outputs found

    Novel Floating General Element Simulators Using CBTA

    Get PDF
    In this study, a novel floating frequency dependent negative resistor (FDNR), floating inductor, floating capacitor and floating resistor simulator circuit employing two CBTAs and three passive components is proposed. The presented circuit can realize floating FDNR, inductor, capacitor or resistor depending on the passive component selection. Since the passive elements are all grounded, this circuit is suitable for fully integrated circuit design. The circuit does not require any component matching conditions, and it has a good sensitivity performance with respect to tracking errors. Moreover, the proposed FDNR, inductance, capacitor and resistor simulator can be tuned electronically by changing the biasing current of the CBTA or can be controlled through the grounded resistor or capacitor. The high-order frequency dependent element simulator circuit is also presented. Depending on the passive component selection, it realizes high-order floating circuit defining as V(s) = snAI(s) or V(s) = s-nBI(s). The proposed floating FDNR simulator circuit and floating high-order frequency dependent element simulator circuit are demonstrated by using PSPICE simulation for 0.25 μm, level 7, TSMC CMOS technology parameters

    Supplementary Inductance Simulator Topologies Employing Single DXCCII

    Get PDF
    In this study, six grounded inductance simulator circuits are presented including additional useful features in comparison to previous dual-X current conveyor (DXCCII) based implementations. To demonstrate the performance and usefulness of the presented circuits, one of them is used to construct a fifth order Butterworth high-pass filter and a current-mode multifunction filter as application examples. Simulation results are given to confirm the theoretical analysis. The derived DXCCII and its applications are simulated using CMOS 0.35 μm technology

    Operational Trans-Resistance Amplifier Based Tunable Wave Active Filter

    Get PDF
    In this paper, Operational Trans-Resistance Amplifier (OTRA) based wave active filter structures are presented. They are flexible and modular, making them suitable to implement higher order filters. The circuits implement the resistors using matched transistors, operating in linear region, making them well suited for IC fabrication. They are insensitive to parasitic input capacitances and input resistances due to the internally grounded input terminals of OTRA. As an application, a doubly terminated third order Butterworth low pass filter has been implemented, by substituting OTRA based wave equivalents of passive elements. PSPICE simulations are given to verify the theoretical analysis

    Unconventional Circuit Elements for Ladder Filter Design

    Get PDF
    Kmitočtové filtry jsou lineární elektrické obvody, které jsou využívány v různých oblastech elektroniky. Současně tvoří základní stavební bloky pro analogové zpracování signálů. V poslední dekádě bylo zavedeno množství aktivních stavebních bloků pro analogové zpracování signálů. Stále však existuje potřeba vývoje nových aktivních součástek, které by poskytovaly nové možnosti a lepší parametry. V práci jsou diskutovány různé aspekty obvodů pracujících v napěťovém, proudovém a smíšném módu. Práce reaguje na dnešní potřebu nízkovýkonových a nízkonapěťových aplikací pro přenosné přístroje a mobilní komunikační systémy a na problémy jejich návrhu. Potřeba těchto výkonných nízkonapěťových zařízení je výzvou návrhářů k hledání nových obvodových topologií a nových nízkonapěťových technik. V práci je popsána řada aktivních prvků, jako například operační transkonduktanční zesilovač (OTA), proudový konvejor II. generace (CCII) a CDTA (Current Differencing Transconductance Amplifier). Dále jsou navrženy nové prvky, jako jsou VDTA (Voltage Differencing Transconductance Amplifier) a VDVTA (Voltage Differencing Voltage Transconductance Amplifier). Všechny tyto prvky byly rovněž implementovány pomocí "bulk-driven" techniky CMOS s cílem realizace nízkonapěťových aplikací. Tato práce je rovněž zaměřena na náhrady klasických induktorů syntetickými induktory v pasivních LC příčkových filtrech. Tyto náhrady pak mohou vést k syntéze aktivních filtrů se zajímavými vlastnostmi.Frequency filters are linear electric circuits that are used in wide area of electronics. They are also the basic building blocks in analogue signal processing. In the last decade, a huge number of active building blocks for analogue signal processing was introduced. However, there is still the need to develop new active elements that offer new possibilities and better parameters. The current-, voltage-, or mixed-mode analog circuits and their various aspects are discussed in the thesis. This work reflects the trend of low-power (LP) low-voltage (LV) circuits for portable electronic and mobile communication systems and the problems of their design. The need for high-performance LV circuits encourages the analog designers to look for new circuit architectures and new LV techniques. This thesis presents various active elements such as Operational Transconductance Amplifier (OTA), Current Conveyor of Second Generation (CCII), and Current Differencing Transconductance Amplifier (CDTA), and introduces novel ones, such as Voltage Differencing Transconductance Amplifier (VDTA) and Voltage Differencing Voltage Transconductance Amplifier (VDVTA). All the above active elements were also designed in CMOS bulk-driven technology for LP LV applications. This thesis is also focused on replacement of conventional inductors by synthetic ones in passive LC ladder filters. These replacements can lead to the synthesis of active filters with interesting parameters.

    New Simple CMOS Realization of Voltage Differencing Transconductance Amplifier and Its RF Filter Application

    Get PDF
    The voltage differencing transconductance amplifier (VDTA) is a recently introduced active element for analog signal processing. However, the realization of VDTA is not given by any author yet. In this work, a new and simple CMOS realization of VDTA is presented. The proposed block has two voltage inputs and two kinds of current output, so it is functional for voltage- and transconductance-mode operation. Furthermore, VDTA exhibits two different values of transconductance so that there is no need to external resistors for VDTA based applications which seems to be a good advantage for analog circuit designer. A CMOS implementation of VDTA and a voltage-mode VDTA based filter are proposed and simulated. An application example of fourth order flat-band band-pass amplifier is given and the performance of the circuit is demonstrated by comparing the theory and simulation

    Design and implementation of digital wave filter adaptors

    Get PDF

    Continuous-time Algorithms and Analog Integrated Circuits for Solving Partial Differential Equations

    Get PDF
    Analog computing (AC) was the predominant form of computing up to the end of World War II. The invention of digital computers (DCs) followed by developments in transistors and thereafter integrated circuits (IC), has led to exponential growth in DCs over the last few decades, making ACs a largely forgotten concept. However, as described by the impending slow-down of Moore’s law, the performance of DCs is no longer improving exponentially, as DCs are approaching clock speed, power dissipation, and transistor density limits. This research explores the possibility of employing AC concepts, albeit using modern IC technologies at radio frequency (RF) bandwidths, to obtain additional performance from existing IC platforms. Combining analog circuits with modern digital processors to perform arithmetic operations would make the computation potentially faster and more energy-efficient. Two AC techniques are explored for computing the approximate solutions of linear and nonlinear partial differential equations (PDEs), and they were verified by designing ACs for solving Maxwell\u27s and wave equations. The designs were simulated in Cadence Spectre for different boundary conditions. The accuracies of the ACs were compared with finite-deference time-domain (FDTD) reference techniques. The objective of this dissertation is to design software-defined ACs with complementary digital logic to perform approximate computations at speeds that are several orders of magnitude greater than competing methods. ACs trade accuracy of the computation for reduced power and increased throughput. Recent examples of ACs are accurate but have less than 25 kHz of analog bandwidth (Fcompute) for continuous-time (CT) operations. In this dissertation, a special-purpose AC, which has Fcompute = 30 MHz (an equivalent update rate of 625 MHz) at a power consumption of 200 mW, is presented. The proposed AC employes 180 nm CMOS technology and evaluates the approximate CT solution of the 1-D wave equation in space and time. The AC is 100x, 26x, 2.8x faster when compared to the MATLAB- and C-based FDTD solvers running on a computer, and systolic digital implementation of FDTD on a Xilinx RF-SoC ZCU1275 at 900 mW (x15 improvement in power-normalized performance compared to RF-SoC), respectively

    Switched capacitor networks : a novel prewarping procedure

    Get PDF
    Bibliography: leaves 152-157.Novel methods for prewarping filter specifications prior to realization. in Switched Capacitor (SC) form are presented. These allow the design of arbitrary response requirements, exhibiting a low amount of error that normally results from the frequency warping associated with sampled-data networks. Adjustment is applied to the pole and zero locations of a reference filter, using three distinct approaches (Center frequency "CF", Selectivity "S" and Complex Mapping "CM" pole/zero prewarping), developed for both the Lossless Discrete Integrator (LOI) and Bilinear (Bil) analog to digital transformations. The derivation of the prewarping expressions is explained with reference to these mappings, and the effect they have on the apparent pole and zero locations of an SC filter realization

    Nonlinearity and noise modeling of operational transconductance amplifiers for continuous time analog filters

    Get PDF
    A general framework for performance optimization of continuous-time OTA-C (Operational Transconductance Amplifier-Capacitor) filters is proposed. Efficient procedures for evaluating nonlinear distortion and noise valid for any filter of arbitrary order are developed based on the matrix description of a general OTA-C filter model . Since these procedures use OTA macromodels, they can be used to obtain the results significantly faster than transistor-level simulation. In the case of transient analysis, the speed-up may be as much as three orders of magnitude without almost no loss of accuracy. This makes it possible to carry out direct numerical optimization of OTA-C filters with respect to important characteristics such as noise performance, THD, IM3, DR or SNR. On the other hand, the general OTA-C filter model allows us to apply matrix transforms that manipulate (rescale) filter element values and/or change topology without changing its transfer function. The above features are a basis to build automated optimization procedures for OTA-C filters. In particular, a systematic optimization procedure using equivalence transformations is proposed. The research also proposes suitable software implementations of the optimization process. The first part of the research proposes a general performance optimization procedure and to verify the process two application type examples are mentioned. An application example of the proposed approach to optimal block sequencing and gain distribution of 8th order cascade Butterworth filter (for two variants of OTA topologies) is given. Secondly the modeling tool is used to select the best suitable topology for a 5th order Bessel Low Pass Filter. Theoretical results are verified by comparing to transistor-level simulation withCADENCE. For the purpose of verification, the filters have also been fabricated in standard 0.5mm CMOS process. The second part of the research proposes a new linearization technique to improve the linearity of an OTA using an Active Error Feedforward technique. Most present day applications require very high linear circuits combined with low noise and low power consumption. An OTA based biquad filter has also been fabricated in 0.35mm CMOS process. The measurement results for the filter and the stand alone OTA have been discussed. The research focuses on these issues
    corecore