35 research outputs found

    A Review of Fingerprint Feature Representations and Their Applications for Latent Fingerprint Identification: Trends and Evaluation

    Get PDF
    Latent fingerprint identification is attracting increasing interest because of its important role in law enforcement. Although the use of various fingerprint features might be required for successful latent fingerprint identification, methods based on minutiae are often readily applicable and commonly outperform other methods. However, as many fingerprint feature representations exist, we sought to determine if the selection of feature representation has an impact on the performance of automated fingerprint identification systems. In this paper, we review the most prominent fingerprint feature representations reported in the literature, identify trends in fingerprint feature representation, and observe that representations designed for verification are commonly used in latent fingerprint identification. We aim to evaluate the performance of the most popular fingerprint feature representations over a common latent fingerprint database. Therefore, we introduce and apply a protocol that evaluates minutia descriptors for latent fingerprint identification in terms of the identification rate plotted in the cumulative match characteristic (CMC) curve. From our experiments, we found that all the evaluated minutia descriptors obtained identification rates lower than 10% for Rank-1 and 24% for Rank-100 comparing the minutiae in the database NIST SD27, illustrating the need of new minutia descriptors for latent fingerprint identification.This work was supported in part by the National Council of Science and Technology of Mexico (CONACYT) under Grant PN-720 and Grant 63894

    The development of automated palmprint identification using major flexion creases

    Get PDF
    Palmar flexion crease matching is a method for verifying or establishing identity. New methods of palmprint identification, that complement existing identification strategies, or reduce analysis and comparison times, will benefit palmprint identification communities worldwide. To this end, this thesis describes new methods of manual and automated palmar flexion crease identification, that can be used to identify palmar flexion creases in online palmprint images. In the first instance, a manual palmar flexion crease identification and matching method is described, which was used to compare palmar flexion creases from 100 palms, each modified 10 times to mimic some of the types of alterations that can be found in crime scene palmar marks. From these comparisons, using manual palmar flexion crease identification, results showed that when labelled within 10 pixels, or 3.5 mm, of the palmar flexion crease, a palmprint image can be identified with a 99.2% genuine acceptance rate and a 0% false acceptance rate. Furthermore, in the second instance, a new method of automated palmar flexion crease recognition, that can be used to identify palmar flexion creases in online palmprint images, is described. A modified internal image seams algorithm was used to extract the flexion creases, and a matching algorithm, based on kd-tree nearest neighbour searching, was used to calculate the similarity between them. Results showed that in 1000 palmprint images from 100 palms, when compared to manually identified palmar flexion creases, a 100% genuine acceptance rate was achieved with a 0.0045% false acceptance rate. Finally, to determine if automated palmar flexion crease recognition can be used as an effective method of palmprint identification, palmar flexion creases from two online palmprint image data sets, containing images from 100 palms and 386 palms respectively, were automatically extracted and compared. In the first data set, that is, for images from 100 palms, an equal error rate of 0.3% was achieved. In the second data set, that is, for images from 386 palms, an equal error rate of 0.415% was achieved.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Mixing Biometric Data For Generating Joint Identities and Preserving Privacy

    Get PDF
    Biometrics is the science of automatically recognizing individuals by utilizing biological traits such as fingerprints, face, iris and voice. A classical biometric system digitizes the human body and uses this digitized identity for human recognition. In this work, we introduce the concept of mixing biometrics. Mixing biometrics refers to the process of generating a new biometric image by fusing images of different fingers, different faces, or different irises. The resultant mixed image can be used directly in the feature extraction and matching stages of an existing biometric system. In this regard, we design and systematically evaluate novel methods for generating mixed images for the fingerprint, iris and face modalities. Further, we extend the concept of mixing to accommodate two distinct modalities of an individual, viz., fingerprint and iris. The utility of mixing biometrics is demonstrated in two different applications. The first application deals with the issue of generating a joint digital identity. A joint identity inherits its uniqueness from two or more individuals and can be used in scenarios such as joint bank accounts or two-man rule systems. The second application deals with the issue of biometric privacy, where the concept of mixing is used for de-identifying or obscuring biometric images and for generating cancelable biometrics. Extensive experimental analysis suggests that the concept of biometric mixing has several benefits and can be easily incorporated into existing biometric systems

    CONTACTLESS FINGERPRINT BIOMETRICS: ACQUISITION, PROCESSING, AND PRIVACY PROTECTION

    Get PDF
    Biometrics is defined by the International Organization for Standardization (ISO) as \u201cthe automated recognition of individuals based on their behavioral and biological characteristics\u201d Examples of distinctive features evaluated by biometrics, called biometric traits, are behavioral characteristics like the signature, gait, voice, and keystroke, and biological characteristics like the fingerprint, face, iris, retina, hand geometry, palmprint, ear, and DNA. The biometric recognition is the process that permits to establish the identity of a person, and can be performed in two modalities: verification, and identification. The verification modality evaluates if the identity declared by an individual corresponds to the acquired biometric data. Differently, in the identification modality, the recognition application has to determine a person's identity by comparing the acquired biometric data with the information related to a set of individuals. Compared with traditional techniques used to establish the identity of a person, biometrics offers a greater confidence level that the authenticated individual is not impersonated by someone else. Traditional techniques, in fact, are based on surrogate representations of the identity, like tokens, smart cards, and passwords, which can easily be stolen or copied with respect to biometric traits. This characteristic permitted a wide diffusion of biometrics in different scenarios, like physical access control, government applications, forensic applications, logical access control to data, networks, and services. Most of the biometric applications, also called biometric systems, require performing the acquisition process in a highly controlled and cooperative manner. In order to obtain good quality biometric samples, the acquisition procedures of these systems need that the users perform deliberate actions, assume determinate poses, and stay still for a time period. Limitations regarding the applicative scenarios can also be present, for example the necessity of specific light and environmental conditions. Examples of biometric technologies that traditionally require constrained acquisitions are based on the face, iris, fingerprint, and hand characteristics. Traditional face recognition systems need that the users take a neutral pose, and stay still for a time period. Moreover, the acquisitions are based on a frontal camera and performed in controlled light conditions. Iris acquisitions are usually performed at a distance of less than 30 cm from the camera, and require that the user assume a defined pose and stay still watching the camera. Moreover they use near infrared illumination techniques, which can be perceived as dangerous for the health. Fingerprint recognition systems and systems based on the hand characteristics require that the users touch the sensor surface applying a proper and uniform pressure. The contact with the sensor is often perceived as unhygienic and/or associated to a police procedure. This kind of constrained acquisition techniques can drastically reduce the usability and social acceptance of biometric technologies, therefore decreasing the number of possible applicative contexts in which biometric systems could be used. In traditional fingerprint recognition systems, the usability and user acceptance are not the only negative aspects of the used acquisition procedures since the contact of the finger with the sensor platen introduces a security lack due to the release of a latent fingerprint on the touched surface, the presence of dirt on the surface of the finger can reduce the accuracy of the recognition process, and different pressures applied to the sensor platen can introduce non-linear distortions and low-contrast regions in the captured samples. Other crucial aspects that influence the social acceptance of biometric systems are associated to the privacy and the risks related to misuses of biometric information acquired, stored and transmitted by the systems. One of the most important perceived risks is related to the fact that the persons consider the acquisition of biometric traits as an exact permanent filing of their activities and behaviors, and the idea that the biometric systems can guarantee recognition accuracy equal to 100\% is very common. Other perceived risks consist in the use of the collected biometric data for malicious purposes, for tracing all the activities of the individuals, or for operating proscription lists. In order to increase the usability and the social acceptance of biometric systems, researchers are studying less-constrained biometric recognition techniques based on different biometric traits, for example, face recognition systems in surveillance applications, iris recognition techniques based on images captured at a great distance and on the move, and contactless technologies based on the fingerprint and hand characteristics. Other recent studies aim to reduce the real and perceived privacy risks, and consequently increase the social acceptance of biometric technologies. In this context, many studies regard methods that perform the identity comparison in the encrypted domain in order to prevent possible thefts and misuses of biometric data. The objective of this thesis is to research approaches able to increase the usability and social acceptance of biometric systems by performing less-constrained and highly accurate biometric recognitions in a privacy compliant manner. In particular, approaches designed for high security contexts are studied in order improve the existing technologies adopted in border controls, investigative, and governmental applications. Approaches based on low cost hardware configurations are also researched with the aim of increasing the number of possible applicative scenarios of biometric systems. The privacy compliancy is considered as a crucial aspect in all the studied applications. Fingerprint is specifically considered in this thesis, since this biometric trait is characterized by high distinctivity and durability, is the most diffused trait in the literature, and is adopted in a wide range of applicative contexts. The studied contactless biometric systems are based on one or more CCD cameras, can use two-dimensional or three-dimensional samples, and include privacy protection methods. The main goal of these systems is to perform accurate and privacy compliant recognitions in less-constrained applicative contexts with respect to traditional fingerprint biometric systems. Other important goals are the use of a wider fingerprint area with respect to traditional techniques, compatibility with the existing databases, usability, social acceptance, and scalability. The main contribution of this thesis consists in the realization of novel biometric systems based on contactless fingerprint acquisitions. In particular, different techniques for every step of the recognition process based on two-dimensional and three-dimensional samples have been researched. Novel techniques for the privacy protection of fingerprint data have also been designed. The studied approaches are multidisciplinary since their design and realization involved optical acquisition systems, multiple view geometry, image processing, pattern recognition, computational intelligence, statistics, and cryptography. The implemented biometric systems and algorithms have been applied to different biometric datasets describing a heterogeneous set of applicative scenarios. Results proved the feasibility of the studied approaches. In particular, the realized contactless biometric systems have been compared with traditional fingerprint recognition systems, obtaining positive results in terms of accuracy, usability, user acceptability, scalability, and security. Moreover, the developed techniques for the privacy protection of fingerprint biometric systems showed satisfactory performances in terms of security, accuracy, speed, and memory usage

    Analysis Of Data Stratification In A Multi-Sensor Fingerprint Dataset Using Match Score Statistics

    Get PDF
    Biometric data is an essential feature employed in testing the performance of any real time biometric recognition system prior to its usage. The variations introduced in the match performance critically determine the authenticity of the biometric data to be able to be used in an everyday scenario for the testing of biometric verification systems. This study in totality aims at understanding the impact of data stratification of a such a biometric test dataset on the match performance of each of its stratum. In order to achieve this goal, the fingerprint dataset of the West Virginia University\u27s 2012 BioCOP has been employed which is a part of the many multimodal biometric data collection projects that the University has accomplished. This test dataset has been initially segmented based on the scanners employed in the process of data acquisition to check for the variations in match performance with reference to the acquisition device. The secondary stage of data stratification included the creation of stratum based on the demographic features of the subjects in the dataset.;The main objectives this study aims to achieve are:;‱ Developing a framework to assess the match score distributions of each stratum..;‱ Assessing the match performance of demographic strata in comparison to the total dataset..;‱ Statistical match performance evaluation using match score statistics..;Following the generation of genuine and imposter match score distributions , Receiver Operating Characteristic Curves (ROC) were plotted to compare the match performance of each demographic stratum with respect to the total dataset. The divergence measures KLD and JSD have been calculated which signify the amount of variation between the match score distributions of each stratum. With the help of these procedures, the task of estimating the effect of data stratification on the match performance has been accomplished which serves as a measure of understanding the impact of this fingerprint dataset when used for biometric testing purposes

    3D minutiae extraction in 3D fingerprint scans.

    Get PDF
    Traditionally, fingerprint image acquisition was based on contact. However the conventional touch-based fingerprint acquisition introduces some problems such as distortions and deformations to the fingerprint image. The most recent technology for fingerprint acquisition is touchless or 3D live scans introducing higher quality fingerprint scans. However, there is a need to develop new algorithms to match 3D fingerprints. In this dissertation, a novel methodology is proposed to extract minutiae in the 3D fingerprint scans. The output can be used for 3D fingerprint matching. The proposed method is based on curvature analysis of the surface. The method used to extract minutiae includes the following steps: smoothing; computing the principal curvature; ridges and ravines detection and tracing; cleaning and connecting ridges and ravines; and minutiae detection. First, the ridges and ravines are detected using curvature tensors. Then, ridges and ravines are traced. Post-processing is performed to obtain clean and connected ridges and ravines based on fingerprint pattern. Finally, minutiae are detected using a graph theory concept. A quality map is also introduced for 3D fingerprint scans. Since a degraded area may occur during the scanning process, especially at the edge of the fingerprint, it is critical to be able to determine these areas. Spurious minutiae can be filtered out after applying the quality map. The algorithm is applied to the 3D fingerprint database and the result is very encouraging. To the best of our knowledge, this is the first minutiae extraction methodology proposed for 3D fingerprint scans

    Biometric layering: template security and privacy through multi-biometric template fusion

    Get PDF
    As biometric applications are gaining popularity, there is increased concern over the loss of privacy and potential misuse of biometric data held in central repositories. Biometric template protection mechanisms suggested in recent years aim to address these issues by securing the biometric data in a template or other structure such that it is suitable for authentication purposes, while being protected against unauthorized access or crosslinking attacks. We propose a biometric authentication framework for enhancing privacy and template security, by layering multiple biometric modalities to construct a multi-biometric template such that it is difficult to extract or separate the individual layers. Thus, the framework uses the subject's own biometric to conceal her biometric data, while it also enjoys the performance benefits because of the use of multiple modalities. The resulting biometric template is also cancelable if the system is implemented with cancelable biometrics such as voice. We present two different realizations of this idea: one combining two different fingerprints and another one combining a fingerprint and a spoken passphrase. In either case, both biometric samples are required for successful authentication, leading to increased security, in addition to privacy gains. The performance of the proposed framework is evaluated using the FVC 2000-2002 and NIST fingerprint databases, and the TUBITAK MTRD speaker database. Results show only a small degradation in EER compared to a state-of-the-art ngerprint verification system and high identification rates, while cross-link rates are low even with very small databases

    Topological coding of single fingerprints

    Get PDF
    The motivation for seeking topological descriptions of single fingerprints is provided by the elasticity of the human skin; successive impressions from the same finger will in-variably have suffered a degree of relative distortion (translation, rotation and stretching). Topology based systems should be free from the detrimental effects of plastic distortion. This thesis is divided into three parts: part I outlines the traditional use of fingerprints as a basis for personal identification and gives detailed explanation of the arguments in favour of topological coding. Methods for the extraction of topology based digital codes are suggested and the ‘placing of lines’ is introduced as an effective means of ordering topological information. In part II specific systems are described for the extraction of simple topological codes from rolled impressions of the pattern types ‘ loops’ , ‘whorls’ and ‘arches’ . The generated codes take the form of vectors or simple digital arrays. The nature and frequency of changes that may occur in such codes is investigated and fingerprint comparison algorithms, based on these topological codes, are developed. The objective of such algorithms is to draw a score derived from the degree of ‘nearness’ of the topological codes in such a manner that it intelligently reflects similarity or dissimilarity in the two prints under comparison. Part III examines the special problems relating to fragmentary ‘scenes-of-crime’ marks. It describes methods of coding fingerprint patterns by a variety of ‘topological coordinate schemes’ , with fingerprint comparison being performed on the basis of localised topological information which is extracted from the recorded coordinate sets. Furthermore, a method for pictorial reconstruction of a complete fingerprint, from its coordinate representation, is demonstrated. Comparison of fingerprints on the basis of digital topological descriptions is shown to offer a substantial improvement in performance over existing (spatial) techniques
    corecore