134,893 research outputs found

    On fast multiplication of a matrix by its transpose

    Get PDF
    We present a non-commutative algorithm for the multiplication of a 2x2-block-matrix by its transpose using 5 block products (3 recursive calls and 2 general products) over C or any finite field.We use geometric considerations on the space of bilinear forms describing 2x2 matrix products to obtain this algorithm and we show how to reduce the number of involved additions.The resulting algorithm for arbitrary dimensions is a reduction of multiplication of a matrix by its transpose to general matrix product, improving by a constant factor previously known reductions.Finally we propose schedules with low memory footprint that support a fast and memory efficient practical implementation over a finite field.To conclude, we show how to use our result in LDLT factorization.Comment: ISSAC 2020, Jul 2020, Kalamata, Greec

    Improving compressed sensing with the diamond norm

    Full text link
    In low-rank matrix recovery, one aims to reconstruct a low-rank matrix from a minimal number of linear measurements. Within the paradigm of compressed sensing, this is made computationally efficient by minimizing the nuclear norm as a convex surrogate for rank. In this work, we identify an improved regularizer based on the so-called diamond norm, a concept imported from quantum information theory. We show that -for a class of matrices saturating a certain norm inequality- the descent cone of the diamond norm is contained in that of the nuclear norm. This suggests superior reconstruction properties for these matrices. We explicitly characterize this set of matrices. Moreover, we demonstrate numerically that the diamond norm indeed outperforms the nuclear norm in a number of relevant applications: These include signal analysis tasks such as blind matrix deconvolution or the retrieval of certain unitary basis changes, as well as the quantum information problem of process tomography with random measurements. The diamond norm is defined for matrices that can be interpreted as order-4 tensors and it turns out that the above condition depends crucially on that tensorial structure. In this sense, this work touches on an aspect of the notoriously difficult tensor completion problem.Comment: 25 pages + Appendix, 7 Figures, published versio
    corecore