1,095 research outputs found

    Fine-grained Information Flow for Concurrent Computation

    Get PDF

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Verificare: a platform for composable verification with application to SDN-Enabled systems

    Full text link
    Software-Defined Networking (SDN) has become increasing prevalent in both the academic and industrial communities. A new class of system built on SDNs, which we refer to as SDN-Enabled, provide programmatic interfaces between the SDN controller and the larger distributed system. Existing tools for SDN verification and analysis are insufficiently expressive to capture this composition of a network and a larger distributed system. Generic verification systems are an infeasible solution, due to their monolithic approach to modeling and rapid state-space explosion. In this thesis we present a new compositional approach to system modeling and verification that is particularly appropriate for SDN-Enabled systems. Compositional models may have sub-components (such as switches and end-hosts) modified, added, or removed with only minimal, isolated changes. Furthermore, invariants may be defined over the composed system that restrict its behavior, allowing assumptions to be added or removed and for components to be abstracted away into the service guarantee that they provide (such as guaranteed packet arrival). Finally, compositional modeling can minimize the size of the state space to be verified by taking advantage of known model structure. We also present the Verificare platform, a tool chain for building compositional models in our modeling language and automatically compiling them to multiple off-the-shelf verification tools. The compiler outputs a minimal, calculus-oblivious formalism, which is accessed by plugins via a translation API. This enables a wide variety of requirements to be verified. As new tools become available, the translator can easily be extended with plugins to support them

    Doctor of Philosophy

    Get PDF
    dissertationIn the static analysis of functional programs, control- ow analysis (k-CFA) is a classic method of approximating program behavior as a infinite state automata. CFA2 and abstract garbage collection are two recent, yet orthogonal improvements, on k-CFA. CFA2 approximates program behavior as a pushdown system, using summarization for the stack. CFA2 can accurately approximate arbitrarily-deep recursive function calls, whereas k-CFA cannot. Abstract garbage collection removes unreachable values from the store/heap. If unreachable values are not removed from a static analysis, they can become reachable again, which pollutes the final analysis and makes it less precise. Unfortunately, as these two techniques were originally formulated, they are incompatible. CFA2's summarization technique for managing the stack obscures the stack such that abstract garbage collection is unable to examine the stack for reachable values. This dissertation presents introspective pushdown control-flow analysis, which manages the stack explicitly through stack changes (pushes and pops). Because this analysis is able to examine the stack by how it has changed, abstract garbage collection is able to examine the stack for reachable values. Thus, introspective pushdown control-flow analysis merges successfully the benefits of CFA2 and abstract garbage collection to create a more precise static analysis. Additionally, the high-performance computing community has viewed functional programming techniques and tools as lacking the efficiency necessary for their applications. Nebo is a declarative domain-specific language embedded in C++ for discretizing partial differential equations for transport phenomena. For efficient execution, Nebo exploits a version of expression templates, based on the C++ template system, which is a type-less, completely-pure, Turing-complete functional language with burdensome syntax. Nebo's declarative syntax supports functional tools, such as point-wise lifting of complex expressions and functional composition of stencil operators. Nebo's primary abstraction is mathematical assignment, which separates what a calculation does from how that calculation is executed. Currently Nebo supports single-core execution, multicore (thread-based) parallel execution, and GPU execution. With single-core execution, Nebo performs on par with the loops and code that it replaces in Wasatch, a pre-existing high-performance simulation project. With multicore (thread-based) execution, Nebo can linearly scale (with roughly 90% efficiency) up to 6 processors, compared to its single-core execution. Moreover, Nebo's GPU execution can be up to 37x faster than its single-core execution. Finally, Wasatch (the pre-existing high-performance simulation project which uses Nebo) can scale up to 262K cores

    A model of actors and grey failures

    Full text link
    Existing models for the analysis of concurrent processes tend to focus on fail-stop failures, where processes are either working or permanently stopped, and their state (working/stopped) is known. In fact, systems are often affected by grey failures: failures that are latent, possibly transient, and may affect the system in subtle ways that later lead to major issues (such as crashes, limited availability, overload). We introduce a model of actor-based systems with grey failures, based on two interlinked layers: an actor model, given as an asynchronous process calculus with discrete time, and a failure model that represents failure patterns to inject in the system. Our failure model captures not only fail-stop node and link failures, but also grey failures (e.g., partial, transient). We give a behavioural equivalence relation based on weak barbed bisimulation to compare systems on the basis of their ability to recover from failures, and on this basis we define some desirable properties of reliable systems. By doing so, we reduce the problem of checking reliability properties of systems to the problem of checking bisimulation

    Certificates for decision problems in temporal logic using context-based tableaux and sequent calculi.

    Get PDF
    115 p.Esta tesis trata de resolver problemas de Satisfactibilidad y Model Checking, aportando certificados del resultado. En ella, se trabaja con tres lógicas temporales: Propositional Linear Temporal Logic (PLTL), Computation Tree Logic (CTL) y Extended Computation Tree Logic (ECTL). Primero se presenta el trabajo realizado sobre Certified Satisfiability. Ahí se muestra una adaptación del ya existente método dual de tableaux y secuentes basados en contexto para satisfactibilidad de fórmulas PLTL en Negation Normal Form. Se ha trabajado la generación de certificados en el caso en el que las fórmulas son insactisfactibles. Por último, se aporta una prueba de soundness del método. Segundo, se ha optimizado con Sat Solvers el método de Certified Satisfiability para el contexto de Certified Model Checking. Se aportan varios ejemplos de sistemas y propiedades. Tercero, se ha creado un nuevo método dual de tableaux y secuentes basados en contexto para realizar Certified Satisfiability para fórmulas CTL yECTL. Se presenta el método y un algoritmo que genera tanto el modelo en el caso de que las fórmulas son satisfactibles como la prueba en el caso en que no lo sean. Por último, se presenta una implementación del método para CTL y una experimentación comparando el método propuesto con otro método de similares características

    When to Move to Transfer Nets On the limits of Petri nets as models for process calculi

    Get PDF
    International audiencePierpaolo Degano has been an influential pioneer in the investigation of Petri nets as models for concurrent process calculi (see e.g. the well-known seminal work by Degano–De Nicola–Montanari also known as DDM88). In this paper, we address the limits of classical Petri nets by discussing when it is necessary to move to the so-called Transfer nets, in which transitions can also move to a target place all the tokens currently present in a source place. More precisely, we consider a simple calculus of processes that interact by generating/consuming messages into/from a shared repository. For this calculus classical Petri nets can faithfully model the process behavior. Then we present a simple extension with a primitive allowing processes to atomically rename all the data of a given kind. We show that with the addition of such primitive it is necessary to move to Transfer nets to obtain a faithful modeling

    Structural Petri net equivalence

    Get PDF
    corecore