23,172 research outputs found

    A Model of Emotion as Patterned Metacontrol

    Get PDF
    Adaptive systems use feedback as a key strategy to cope with uncertainty and change in their environments. The information fed back from the sensorimotor loop into the control architecture can be used to change different elements of the controller at four different levels: parameters of the control model, the control model itself, the functional organization of the agent and the functional components of the agent. The complexity of such a space of potential conïŹgurations is daunting. The only viable alternative for the agent ?in practical, economical, evolutionary terms? is the reduction of the dimensionality of the conïŹguration space. This reduction is achieved both by functionalisation —or, to be more precise, by interface minimization— and by patterning, i.e. the selection among a predeïŹned set of organisational conïŹgurations. This last analysis let us state the central problem of how autonomy emerges from the integration of the cognitive, emotional and autonomic systems in strict functional terms: autonomy is achieved by the closure of functional dependency. In this paper we will show a general model of how the emotional biological systems operate following this theoretical analysis and how this model is also of applicability to a wide spectrum of artiïŹcial systems

    Exploiting lattice structures in shape grammar implementations

    Get PDF
    The ability to work with ambiguity and compute new designs based on both defined and emergent shapes are unique advantages of shape grammars. Realizing these benefits in design practice requires the implementation of general purpose shape grammar interpreters that support: (a) the detection of arbitrary subshapes in arbitrary shapes and (b) the application of shape rules that use these subshapes to create new shapes. The complexity of currently available interpreters results from their combination of shape computation (for subshape detection and the application of rules) with computational geometry (for the geometric operations need to generate new shapes). This paper proposes a shape grammar implementation method for three-dimensional circular arcs represented as rational quadratic BĂ©zier curves based on lattice theory that reduces this complexity by separating steps in a shape computation process from the geometrical operations associated with specific grammars and shapes. The method is demonstrated through application to two well-known shape grammars: Stiny's triangles grammar and Jowers and Earl's trefoil grammar. A prototype computer implementation of an interpreter kernel has been built and its application to both grammars is presented. The use of BĂ©zier curves in three dimensions opens the possibility to extend shape grammar implementations to cover the wider range of applications that are needed before practical implementations for use in real life product design and development processes become feasible

    Both Generic Design and Different Forms of Designing

    Get PDF
    This paper defends an augmented cognitively oriented "generic-design hypothesis": There are both significant similarities between the design activities implemented in different situations and crucial differences between these and other cognitive activities; yet, characteristics of a design situation (i.e., related to the designers, the artefact, and other task variables influencing these two) introduce specificities in the corresponding design activities and cognitive structures that are used. We thus combine the generic-design hypothesis with that of different "forms" of designing. In this paper, outlining a number of directions that need further elaboration, we propose a series of candidate dimensions underlying such forms of design

    Goal Congruence, Trust and Organisational Culture: Strengthening Knowledge Links

    Get PDF
    Collaboration between organizations benefits from knowledge links -- a form of strategic alliance that gives organizations access to the skills and capabilities of their partner and opportunity to create new capabilities together. Using the example of alliances between two universities and SAP AG, the market leader in Enterprise Software, the paper suggests some management practices to improve goal congruence, trust and alignment between different organizational cultures. For example, face-to-face interactions are critical for building a close relationship over time. A theoretical framework of the five phases of partnership development and the three challenges faced by knowledge link partnerships is proposed, along with implications for management, universities and research

    Design: One, but in different forms

    Full text link
    This overview paper defends an augmented cognitively oriented generic-design hypothesis: there are both significant similarities between the design activities implemented in different situations and crucial differences between these and other cognitive activities; yet, characteristics of a design situation (related to the design process, the designers, and the artefact) introduce specificities in the corresponding cognitive activities and structures that are used, and in the resulting designs. We thus augment the classical generic-design hypothesis with that of different forms of designing. We review the data available in the cognitive design research literature and propose a series of candidates underlying such forms of design, outlining a number of directions requiring further elaboration

    Challenging the Computational Metaphor: Implications for How We Think

    Get PDF
    This paper explores the role of the traditional computational metaphor in our thinking as computer scientists, its influence on epistemological styles, and its implications for our understanding of cognition. It proposes to replace the conventional metaphor--a sequence of steps--with the notion of a community of interacting entities, and examines the ramifications of such a shift on these various ways in which we think

    The Algebraic View of Computation

    Full text link
    We argue that computation is an abstract algebraic concept, and a computer is a result of a morphism (a structure preserving map) from a finite universal semigroup.Comment: 13 pages, final version will be published elsewher
    • 

    corecore