4 research outputs found

    Urgent Aeromedical Evacuation Network Capacity Planning

    Get PDF
    Aeromedical Evacuation (AE) has been steadily utilized during Operation Iraqi Freedom and Operation Enduring Freedom. AE is a global enterprise. The current structure of AE is facing changes as forces scale down from operations in Iraq and Afghanistan. AE will, however, continue to be important in its domestic use in the continental USA (CONUS). Current practice is to pull aircraft (e.g. C-17, C-130 or KC-135) from their normal operations to meet Urgent and Priority patient needs when local alternatives are infeasible. An alternative to the current system would be having a centralized bed-down location for AE operations that would house dedicated aircraft as well as AE personnel. In this thesis, a hybrid queuing and discrete-event simulation approach is used to determine how many aircraft are needed for a given level of AE patient care and an integer programming model is used to locate aircraft within the provider network. The high costs associated with operating current aircraft drive this research to look for solutions that better represent the future of Urgent and Priority patient movement operations whether CONUS or global

    desarrollo de un algoritmo planificador de rutas con capacidad de implementaci贸n en diversas aplicaciones de la rob贸tica m贸vil

    Get PDF
    La posibilidad de implementar un algoritmo capaz de dotar de inteligencia a un sistema rob贸tico que pueda desplazarse y percibir su entorno (que de ahora en adelante se conocer谩 como un agente inteligente), se convierte en un recurso valioso para la rob贸tica m贸vil y la sociedad al aplicarse para realizar tareas de manera aut贸noma, algunas de las cuales pueden ser demasiado complejas o peligrosas para ser desarrolladas por un ser vivo. En el 谩rea de la inteligencia artificial aplicada a la planificaci贸n de rutas y especialmente cuando se hace uso de funciones heur铆sticas, encontrar una ruta que una dos puntos conocidos como inicio y destino no garantiza directamente que se encuentre la mejor ruta; sin embargo el hecho de encontrar un camino que permita conectar dos puntos se vuelve una soluci贸n valiosa dependiendo la situaci贸n donde se realice la planificaci贸n

    Design of a strategy to obtain safe paths from collaborative robot teamwork

    Get PDF
    Documento en PDF a color.figuras, tablasThis doctoral thesis was designed and implemented using a strategy of explorer agents and a management and monitoring system to obtain the shortest and safest paths. The strategy was simulated using Matlab R2016 in 10 test environments. The comparisons were made between the results obtained by considering each robot's work and contrasting it with the results obtained by implementing the cooperative-collaborative strategy. For this purpose, were used two path planning algorithms, they are the A* and the Greedy Best First Search (GBFS). Some changes were made to these classic algorithms to improve their performance to guarantee interactions and comparisons between them, transforming them into Incremental Heuristic (IH) algorithms, which gave rise to a couple of agents with new path planners called IH-A* and IH-GBFS. The cooperative strategy was implemented with IH-A* and IH-GBFS algorithms to obtain the shortest paths. The cooperative process was used 300 times in 100 complete tests (3 times in 10 tests in each of 10 environments), which allowed determining that the strategy decreased the original path (without cooperation) in 79% of the cases. In 20.50% of cases, the author identified that the cooperative process, reduced to less than half the original path. The collaborative strategy was implemented to obtain the safer path, using a communications system that allows the interaction among the explorer agents, the test environment, and the management and monitoring system to generate early warnings and compare the risk between paths. In this work, the risk is due to hidden marks found by the explorer agents; for this reason, it is implemented a potential risk function that allows obtaining the path risk estimated. The path risk estimated metric is the one that facilitates the evaluation and comparison of risk between paths to find safer paths. The AWMRs operates using a kinematic model, a controller, a path planner, and sensors that allow them to navigate through the environment gently and safely. Simultaneously with the explorer agents, the administration and monitoring system as a user interface that facilitates the presentation and consolidation of results were implemented. Subsequently, 16 tests were carried out, implementing the complete cooperative-collaborative strategy in four different environments, which had hidden marks. When analyzing the results, it was determined that the Shortest Safest Estimated Path was found in 62.5% of the tests. A WMR and a square test stage were built. In the test scenario, 240 path tracking tests were carried out (the WMR travelled 24 different paths; the WMR travelled each path ten times). The path data were obtained using odometry with encoders onboard the robot and image processing through an external camera. The author apply a tracking error analysis on the WMR path, travelling a circumference of 3.64 m in length. When comparing the path obtained with the WMR kinematic model with the data obtained using image processing, a Mean Absolute Percentage Error (MAPE) of 2,807% was obtained; and with the odometry data, the MAPE was 1,224%. As a general conclusion, this study has numerically identified the relevance of the implementation of the cooperative-collaborative strategy in robotic teamwork to find shortest and safest paths, a strategy applied in test environments that have obstacles and hidden marks. The cooperative-collaborative strategy can be used in different applications that involve displacement in a dangerous place or environment, such as a minefield or a region at risk of spreading COVID-19.Esta tesis doctoral fue dise帽ada e implementada utilizando una estrategia de agentes exploradores y un sistema de gesti贸n y seguimiento para obtener caminos m谩s cortos y seguros. La estrategia se simul贸 utilizando Matlab R2016 en 10 entornos de prueba. Las comparaciones se realizaron entre los resultados obtenidos al considerar el trabajo realizado por cada robot y contrastarlo con los resultados obtenidos al implementar la estrategia cooperativa-colaborativa. Para ello, se utilizaron dos algoritmos de planificaci贸n de rutas, que son el A* y el Greedy Best First Search (GBFS). Se realizaron algunos cambios a estos algoritmos cl谩sicos para mejorar su rendimiento para garantizar interacciones y comparaciones entre ellos, transform谩ndolos en algoritmos Heur铆sticos Incrementales (IH), lo que dio lugar a un par de agentes con nuevos planificadores de rutas denominados IH-A * e IH- GBFS. La estrategia cooperativa se implement贸 con algoritmos IH-A * e IH-GBFS para obtener los caminos m谩s cortos. El proceso cooperativo se utiliz贸 300 veces en 100 pruebas completas (3 veces en 10 pruebas en cada uno de los 10 entornos), lo que permiti贸 determinar que la estrategia disminuy贸 la trayectoria original (sin cooperaci贸n) en el 79% de los casos. En el 20,50% de los casos, el autor identific贸 que el proceso cooperativo, redujo la distancia entre inicio y meta a menos de la mitad del recorrido original. La estrategia colaborativa se implement贸 para obtener el camino m谩s seguro, utilizando un sistema de comunicaciones que permite la interacci贸n entre los agentes exploradores, el entorno de prueba y el sistema de gesti贸n y monitoreo para generar alertas tempranas y comparar el riesgo entre caminos. En este trabajo, el riesgo se debe a las marcas ocultas encontradas por los agentes exploradores; por ello, se implementa una funci贸n de riesgo potencial que permite obtener el riesgo de ruta estimado. La m茅trica estimada de riesgo de ruta es la que facilita la evaluaci贸n y comparaci贸n de riesgo entre rutas para encontrar rutas m谩s seguras. Los robots aut贸nomos m贸viles con ruedas (en ingl茅s AWMR) operan utilizando un modelo cinem谩tico, un controlador, un planificador de rutas y sensores que les permiten navegar por el entorno de manera suave y segura. Simult谩neamente con los agentes exploradores, el autor implement贸 un sistema de administraci贸n y monitoreo como interfaz de usuario que facilita la presentaci贸n y consolidaci贸n de resultados. Posteriormente, se realizaron 16 pruebas, implementando la estrategia cooperativa-colaborativa completa en cuatro entornos diferentes, que ten铆an marcas ocultas. Al analizar los resultados, se determin贸 que una ruta estimada m谩s corta y m谩s segura se obten铆a en el 62.5% de las pruebas. Se construyeron un WMR y un escenario de prueba cuadrado. En el escenario de prueba, se llevaron a cabo 240 pruebas de seguimiento de ruta (el WMR recorri贸 24 rutas diferentes; el WMR recorri贸 cada ruta diez veces). Los datos de la trayectoria se obtuvieron utilizando odometr铆a con encoders a bordo del robot y procesamiento de im谩genes a trav茅s de una c谩mara externa. El autor aplica un an谩lisis de error de seguimiento en la ruta recorrida por el WMR, generando una circunferencia de 3,64 m de longitud. Al comparar la ruta obtenida con el modelo cinem谩tico del WMR con los datos obtenidos usando el procesamiento de im谩genesse obtuvo un error de porcentaje absoluto medio (MAPE) de 2.807%; y con los datos de odometr铆a, el MAPE fue de 1,224%. Como conclusi贸n general, este estudio ha identificado num茅ricamente la relevancia de la implementaci贸n de la estrategia cooperativa-colaborativa en el trabajo en equipo rob贸tico para encontrar caminos m谩s cortos y seguros, estrategia aplicada en entornos de prueba que poseen obst谩culos y marcas ocultas. La estrategia cooperativa-colaborativa puede ser utilizada en diferentes aplicaciones que involucran el desplazamiento en un lugar o entorno peligroso, como pueden ser un campo minado o una regi贸n en riesgo de propagaci贸n de COVID-19.DoctoradoDoctor en Ingenier铆a - Ingenier铆a Autom谩tic

    A new technique enables dynamic replanning and rescheduling of aeromedical evacuation

    No full text
    We describe an application of a dynamic replanning technique in a highly dynamic and complex domain: the military aeromedical evacuation of patients to medical treatment facilities. U.S. Transportation Command (USTRANSCOM) is the DoD agency responsible for evacuating patients during wartime and peace. Doctrinally, patients requiring extended treatment must be evacuated by air to a suitable Medical Treatment Facility (MTF). The Persian Gulf war was the first significant armed conflict in which this concept has been put to a serious test. The results were far from satisfactory-- about 60 % of the patients ended up at the wrong destinations. In early 1993, the Department of Defense tasked USTRANSCOM to consolidate the command and control of medical regulation and aeromedical evacuation operations. The ensuing analysis led to TRAC2ES (TRANSCOM Regulating and Command and Control Evacuation System), a decision support system for planning and scheduling medical evacuation operations. Probably the most challenging aspect of the problem has to do with the dynamics of a domain in which requirements and constraints continuously change over time. Continuous dynamic replanning is a key capability of TRAC2ES. This paper describes the application and the AI approach we took in providing thi
    corecore