35 research outputs found

    TV-Stokes And Its Variants For Image Processing

    Get PDF
    The total variational minimization with a Stokes constraint, also known as the TV-Stokes model, has been considered as one of the most successful models in image processing, especially in image restoration and sparse-data-based 3D surface reconstruction. This thesis studies the TV-Stokes model and its existing variants, proposes new and more effective variants of the model and their algorithms applied to some of the most interesting image processing problems. We first review some of the variational models that already exist, in particular the TV-Stokes model and its variants. Common techniques like the augmented Lagrangian and the dual formulation, are also introduced. We then present our models as new variants of the TV-Stokes. The main focus of the work has been on the sparse surface reconstruction of 3D surfaces. A model (WTR) with a vector fidelity, that is the gradient vector fidelity, has been proposed, applying it to both 3D cartoon design and height map reconstruction. The model employs the second-order total variation minimization, where the curl-free condition is satisfied automatically. Because the model couples both the height and the gradient vector representing the surface in the same minimization, it constructs the surface correctly. A variant of this model is then introduced, which includes a vector matching term. This matching term gives the model capability to accurately represent the shape of a geometry in the reconstruction. Experiments show a significant improvement over the state-of-the-art models, such as the TV model, higher order TV models, and the anisotropic third-order regularization model, when applied to some general applications. In another work, the thesis generalizes the TV-Stokes model from two dimensions to an arbitrary number of dimensions, introducing a convenient form for the constraint in order it to be extended to higher dimensions. The thesis explores also the idea of feature accumulation through iterative regularization in another work, introducing a Richardson-like iteration for the TV-Stokes. Thisis then followed by a more general model, a combined model, based on the modified variant of the TV-stokes. The resulting model is found to be equivalent to the well-known TGV model. The thesis introduces some interesting numerical strategies for the solution of the TV-Stokes model and its variants. Higher order PDEs are turned into inhomogeneous modified Helmholtz equations through transformations. These equations are then solved using the preconditioned conjugate gradients method or the fast Fourier transformation. The thesis proposes a simple but quite general approach to finding closed form solutions to a general L1 minimization problem, and applies it to design algorithms for our models.Doktorgradsavhandlin

    4D imaging in tomography and optical nanoscopy

    Full text link
    Diese Dissertation gehört zu den Gebieten mathematische Bildverarbeitung und inverse Probleme. Ein inverses Problem ist die Aufgabe, Modellparameter anhand von gemessenen Daten zu berechnen. Solche Probleme treten in zahlreichen Anwendungen in Wissenschaft und Technik auf, z.B. in medizinischer Bildgebung, Biophysik oder Astronomie. Wir betrachten Rekonstruktionsprobleme mit Poisson Rauschen in der Tomographie und optischen Nanoskopie. Bei letzterer gilt es Bilder ausgehend von verzerrten und verrauschten Messungen zu rekonstruieren, wohingegen in der Positronen-Emissions-Tomographie die Aufgabe in der Visualisierung physiologischer Prozesse eines Patienten besteht. Standardmethoden zur 3D Bildrekonstruktion berücksichtigen keine zeitabhängigen Informationen oder Dynamik, z.B. Herzschlag oder Atmung in der Tomographie oder Zellmigration in der Mikroskopie. Diese Dissertation behandelt Modelle, Analyse und effiziente Algorithmen für 3D und 4D zeitabhängige inverse Probleme. This thesis contributes to the field of mathematical image processing and inverse problems. An inverse problem is a task, where the values of some model parameters must be computed from observed data. Such problems arise in a wide variety of applications in sciences and engineering, such as medical imaging, biophysics or astronomy. We mainly consider reconstruction problems with Poisson noise in tomography and optical nanoscopy. In the latter case, the task is to reconstruct images from blurred and noisy measurements, whereas in positron emission tomography the task is to visualize physiological processes of a patient. In 3D static image reconstruction standard methods do not incorporate time-dependent information or dynamics, e.g. heart beat or breathing in tomography or cell motion in microscopy. This thesis is a treatise on models, analysis and efficient algorithms to solve 3D and 4D time-dependent inverse problems

    Roadmap on 3D integral imaging: Sensing, processing, and display

    Get PDF
    This Roadmap article on three-dimensional integral imaging provides an overview of some of the research activities in the field of integral imaging. The article discusses various aspects of the field including sensing of 3D scenes, processing of captured information, and 3D display and visualization of information. The paper consists of a series of 15 sections from the experts presenting various aspects of the field on sensing, processing, displays, augmented reality, microscopy, object recognition, and other applications. Each section represents the vision of its author to describe the progress, potential, vision, and challenging issues in this field

    Generating structured non-smooth priors and associated primal-dual methods

    Get PDF
    The purpose of the present chapter is to bind together and extend some recent developments regarding data-driven non-smooth regularization techniques in image processing through the means of a bilevel minimization scheme. The scheme, considered in function space, takes advantage of a dualization framework and it is designed to produce spatially varying regularization parameters adapted to the data for well-known regularizers, e.g. Total Variation and Total Generalized variation, leading to automated (monolithic), image reconstruction workflows. An inclusion of the theory of bilevel optimization and the theoretical background of the dualization framework, as well as a brief review of the aforementioned regularizers and their parameterization, makes this chapter a self-contained one. Aspects of the numerical implementation of the scheme are discussed and numerical examples are provided

    Applications of PDEs inpainting to magnetic particle imaging and corneal topography

    Get PDF
    In this work we propose a novel application of Partial Differential Equations (PDEs) inpainting techniques to two medical contexts. The first one concerning recovering of concentration maps for superparamagnetic nanoparticles, used as tracers in the framework of Magnetic Particle Imaging. The analysis is carried out by two set of simulations, with and without adding a source of noise, to show that the inpainted images preserve the main properties of the original ones. The second medical application is related to recovering data of corneal elevation maps in ophthalmology. A new procedure consisting in applying the PDEs inpainting techniques to the radial curvature image is proposed. The images of the anterior corneal surface are properly recovered to obtain an approximation error of the required precision. We compare inpainting methods based on second, third and fourth-order PDEs with standard approximation and interpolation techniques

    Geometric Variational Models for Inverse Problems in Imaging

    Get PDF
    This dissertation develops geometric variational models for different inverse problems in imaging that are ill-posed, designing at the same time efficient numerical algorithms to compute their solutions. Variational methods solve inverse problems by the following two steps: formulation of a variational model as a minimization problem, and design of a minimization algorithm to solve it. This dissertation is organized in the same manner. It first formulates minimization problems associated with geometric models for different inverse problems in imaging, and it then designs efficient minimization algorithms to compute their solutions. The minimization problem summarizes both the data available from the measurements and the prior knowledge about the solution in its objective functional; this naturally leads to the combination of a measurement or data term and a prior term. Geometry can play a role in any of these terms, depending on the properties of the data acquisition system or the object being imaged. In this context, each chapter of this dissertation formulates a variational model that includes geometry in a different manner in the objective functional, depending on the inverse problem at hand. In the context of compressed sensing, the first chapter exploits the geometric properties of images to include an alignment term in the sparsity prior of compressed sensing; this additional prior term aligns the normal vectors of the level curves of the image with the reconstructed signal, and it improves the quality of reconstruction. A two-step recovery method is designed for that purpose: first, it estimates the normal vectors to the level curves of the image; second, it reconstructs an image matching the compressed sensing measurements, the geometric alignment of normals, and the sparsity constraint of compressed sensing. The proposed method is extended to non-local operators in graphs for the recovery of textures. The harmonic active contours of Chapter 2 make use of differential geometry to interpret the segmentation of an image as a minimal surface manifold. In this case, geometry is exploited in both the measurement term, by coupling the different image channels in a robust edge detector, and in the prior term, by imposing smoothness in the segmentation. The proposed technique generalizes existing active contours to higher dimensional spaces and non-flat images; in the plane, it improves the segmentation of images with inhomogeneities and weak edges. Shape-from-shading is investigated in Chapter 3 for the reconstruction of a silicon wafer from images of printed circuits taken with a scanning electron microscope. In this case, geometry plays a role in the image acquisition system, that is, in the measurement term of the objective functional. The prior term involves a smoothness constraint on the surface and a shape prior on the expected pattern in the circuit. The proposed reconstruction method also estimates a deformation field between the ideal pattern design and the reconstructed surface, substituting the model of shape variability necessary in shape priors with an elastic deformation field that quantifies deviations in the manufacturing process. Finally, the techniques used for the design of efficient numerical algorithms are explained with an example problem based on the level set method. To this purpose, Chapter 4 develops an efficient algorithm for the level set method when the level set function is constrained to remain a signed distance function. The distance function is preserved by the introduction of an explicit constraint in the minimization problem, the minimization algorithm is efficient by the adequate use of variable-splitting and augmented Lagrangian techniques. These techniques introduce additional variables, constraints, and Lagrange multipliers in the original minimization problem, and they decompose it into sub-optimization problems that are simple and can be efficiently solved. As a result, the proposed algorithm is five to six times faster than the original algorithm for the level set method

    Geodesic Active Fields:A Geometric Framework for Image Registration

    Get PDF
    Image registration is the concept of mapping homologous points in a pair of images. In other words, one is looking for an underlying deformation field that matches one image to a target image. The spectrum of applications of image registration is extremely large: It ranges from bio-medical imaging and computer vision, to remote sensing or geographic information systems, and even involves consumer electronics. Mathematically, image registration is an inverse problem that is ill-posed, which means that the exact solution might not exist or not be unique. In order to render the problem tractable, it is usual to write the problem as an energy minimization, and to introduce additional regularity constraints on the unknown data. In the case of image registration, one often minimizes an image mismatch energy, and adds an additive penalty on the deformation field regularity as smoothness prior. Here, we focus on the registration of the human cerebral cortex. Precise cortical registration is required, for example, in statistical group studies in functional MR imaging, or in the analysis of brain connectivity. In particular, we work with spherical inflations of the extracted hemispherical surface and associated features, such as cortical mean curvature. Spatial mapping between cortical surfaces can then be achieved by registering the respective spherical feature maps. Despite the simplified spherical geometry, inter-subject registration remains a challenging task, mainly due to the complexity and inter-subject variability of the involved brain structures. In this thesis, we therefore present a registration scheme, which takes the peculiarities of the spherical feature maps into particular consideration. First, we realize that we need an appropriate hierarchical representation, so as to coarsely align based on the important structures with greater inter-subject stability, before taking smaller and more variable details into account. Based on arguments from brain morphogenesis, we propose an anisotropic scale-space of mean-curvature maps, built around the Beltrami framework. Second, inspired by concepts from vision-related elements of psycho-physical Gestalt theory, we hypothesize that anisotropic Beltrami regularization better suits the requirements of image registration regularization, compared to traditional Gaussian filtering. Different objects in an image should be allowed to move separately, and regularization should be limited to within the individual Gestalts. We render the regularization feature-preserving by limiting diffusion across edges in the deformation field, which is in clear contrast to the indifferent linear smoothing. We do so by embedding the deformation field as a manifold in higher-dimensional space, and minimize the associated Beltrami energy which represents the hyperarea of this embedded manifold as measure of deformation field regularity. Further, instead of simply adding this regularity penalty to the image mismatch in lieu of the standard penalty, we propose to incorporate the local image mismatch as weighting function into the Beltrami energy. The image registration problem is thus reformulated as a weighted minimal surface problem. This approach has several appealing aspects, including (1) invariance to re-parametrization and ability to work with images defined on non-flat, Riemannian domains (e.g., curved surfaces, scalespaces), and (2) intrinsic modulation of the local regularization strength as a function of the local image mismatch and/or noise level. On a side note, we show that the proposed scheme can easily keep up with recent trends in image registration towards using diffeomorphic and inverse consistent deformation models. The proposed registration scheme, called Geodesic Active Fields (GAF), is non-linear and non-convex. Therefore we propose an efficient optimization scheme, based on splitting. Data-mismatch and deformation field regularity are optimized over two different deformation fields, which are constrained to be equal. The constraint is addressed using an augmented Lagrangian scheme, and the resulting optimization problem is solved efficiently using alternate minimization of simpler sub-problems. In particular, we show that the proposed method can easily compete with state-of-the-art registration methods, such as Demons. Finally, we provide an implementation of the fast GAF method on the sphere, so as to register the triangulated cortical feature maps. We build an automatic parcellation algorithm for the human cerebral cortex, which combines the delineations available on a set of atlas brains in a Bayesian approach, so as to automatically delineate the corresponding regions on a subject brain given its feature map. In a leave-one-out cross-validation study on 39 brain surfaces with 35 manually delineated gyral regions, we show that the pairwise subject-atlas registration with the proposed spherical registration scheme significantly improves the individual alignment of cortical labels between subject and atlas brains, and, consequently, that the estimated automatic parcellations after label fusion are of better quality
    corecore