172 research outputs found

    Waveform Advancements and Synchronization Techniques for Generalized Frequency Division Multiplexing

    Get PDF
    To enable a new level of connectivity among machines as well as between people and machines, future wireless applications will demand higher requirements on data rates, response time, and reliability from the communication system. This will lead to a different system design, comprising a wide range of deployment scenarios. One important aspect is the evolution of physical layer (PHY), specifically the waveform modulation. The novel generalized frequency division multiplexing (GFDM) technique is a prominent proposal for a flexible block filtered multicarrier modulation. This thesis introduces an advanced GFDM concept that enables the emulation of other prominent waveform candidates in scenarios where they perform best. Hence, a unique modulation framework is presented that is capable of addressing a wide range of scenarios and to upgrade the PHY for 5G networks. In particular, for a subset of system parameters of the modulation framework, the problem of symbol time offset (STO) and carrier frequency offset (CFO) estimation is investigated and synchronization approaches, which can operate in burst and continuous transmissions, are designed. The first part of this work presents the modulation principles of prominent 5G candidate waveforms and then focuses on the GFDM basic and advanced attributes. The GFDM concept is extended towards the use of OQAM, introducing the novel frequency-shift OQAM-GFDM, and a new low complexity model based on signal processing carried out in the time domain. A new prototype filter proposal highlights the benefits obtained in terms of a reduced out-of-band (OOB) radiation and more attractive hardware implementation cost. With proper parameterization of the advanced GFDM, the achieved gains are applicable to other filtered OFDM waveforms. In the second part, a search approach for estimating STO and CFO in GFDM is evaluated. A self-interference metric is proposed to quantify the effective SNR penalty caused by the residual time and frequency misalignment or intrinsic inter-symbol interference (ISI) and inter-carrier interference (ICI) for arbitrary pulse shape design in GFDM. In particular, the ICI can be used as a non-data aided approach for frequency estimation. Then, GFDM training sequences, defined either as an isolated preamble or embedded as a midamble or pseudo-circular pre/post-amble, are designed. Simulations show better OOB emission and good estimation results, either comparable or superior, to state-of-the-art OFDM system in wireless channels

    Frequency-domain receiver design for doubly-selective channels

    Get PDF
    This work is devoted to the broadband wireless transmission techniques, which are serious candidates to be implemented in future broadband wireless and cellular systems, aiming at providing high and reliable data transmission and concomitantly high mobility. In order to cope with doubly-selective channels, receiver structures based on OFDM and SC-FDE block transmission techniques, are proposed, which allow cost-effective implementations, using FFT-based signal processing. The first subject to be addressed is the impact of the number of multipath components, and the diversity order, on the asymptotic performance of OFDM and SC-FDE, in uncoded and for different channel coding schemes. The obtained results show that the number of relevant separable multipath components is a key element that influences the performance of OFDM and SC-FDE schemes. Then, the improved estimation and detection performance of OFDM-based broadcasting systems, is introduced employing SFN (Single Frequency Network) operation. An initial coarse channel is obtained with resort to low-power training sequences estimation, and an iterative receiver with joint detection and channel estimation is presented. The achieved results have shown very good performance, close to that with perfect channel estimation. The next topic is related to SFN systems, devoting special attention to time-distortion effects inherent to these networks. Typically, the SFN broadcast wireless systems employ OFDM schemes to cope with severely time-dispersive channels. However, frequency errors, due to CFO, compromises the orthogonality between subcarriers. As an alternative approach, the possibility of using SC-FDE schemes (characterized by reduced envelope fluctuations and higher robustness to carrier frequency errors) is evaluated, and a technique, employing joint CFO estimation and compensation over the severe time-distortion effects, is proposed. Finally, broadband mobile wireless systems, in which the relative motion between the transmitter and receiver induces Doppler shift which is different or each propagation path, is considered, depending on the angle of incidence of that path in relation to the direction of travel. This represents a severe impairment in wireless digital communications systems, since that multipath propagation combined with the Doppler effects, lead to drastic and unpredictable fluctuations of the envelope of the received signal, severely affecting the detection performance. The channel variations due this effect are very difficult to estimate and compensate. In this work we propose a set of SC-FDE iterative receivers implementing efficient estimation and tracking techniques. The performance results show that the proposed receivers have very good performance, even in the presence of significant Doppler spread between the different groups of multipath components

    Robust frequency-domain turbo equalization for multiple-input multiple-output (MIMO) wireless communications

    Get PDF
    This dissertation investigates single carrier frequency-domain equalization (SC-FDE) with multiple-input multiple-output (MIMO) channels for radio frequency (RF) and underwater acoustic (UWA) wireless communications. It consists of five papers, selected from a total of 13 publications. Each paper focuses on a specific technical challenge of the SC-FDE MIMO system. The first paper proposes an improved frequency-domain channel estimation method based on interpolation to track fast time-varying fading channels using a small amount of training symbols in a large data block. The second paper addresses the carrier frequency offset (CFO) problem using a new group-wise phase estimation and compensation algorithm to combat phase distortion caused by CFOs, rather than to explicitly estimate the CFOs. The third paper incorporates layered frequency-domain equalization with the phase correction algorithm to combat the fast phase rotation in coherent communications. In the fourth paper, the frequency-domain equalization combined with the turbo principle and soft successive interference cancelation (SSIC) is proposed to further improve the bit error rate (BER) performance of UWA communications. In the fifth paper, a bandwidth-efficient SC-FDE scheme incorporating decision-directed channel estimation is proposed for UWA MIMO communication systems. The proposed algorithms are tested by extensive computer simulations and real ocean experiment data. The results demonstrate significant performance improvements in four aspects: improved channel tracking, reduced BER, reduced computational complexity, and enhanced data efficiency --Abstract, page iv

    Single- versus Multi-Carrier Terahertz-Band Communications: A Comparative Study

    Full text link
    The prospects of utilizing single-carrier (SC) and multi-carrier (MC) waveforms in future terahertz (THz)-band communication systems remain unresolved. On the one hand, the limited multi-path components at high frequencies result in frequency-flat channels that favor low-complexity wideband SC systems. On the other hand, frequency-dependent molecular absorption and transceiver characteristics and the existence of multi-path components in indoor sub-THz systems can still result in frequency-selective channels, favoring off-the-shelf MC schemes such as orthogonal frequency-division multiplexing (OFDM). Variations of SC/MC designs result in different THz spectrum utilization, but spectral efficiency is not the primary concern with substantial available bandwidths; baseband complexity, power efficiency, and hardware impairment constraints are predominant. This paper presents a comprehensive study of SC/MC modulations for THz communications, utilizing an accurate wideband THz channel model and highlighting the various performance and complexity trade-offs of the candidate schemes. Simulations demonstrate that discrete-Fourier-transform spread orthogonal time-frequency space (DFT-s-OTFS) achieves a lower peak-to-average power ratio (PAPR) than OFDM and OTFS and enhances immunity to THz impairments and Doppler spreads, but at an increased complexity cost. Moreover, DFT-s-OFDM is a promising candidate that increases robustness to THz impairments and phase noise (PHN) at a low PAPR and overall complexity.Comment: 18 pages, 12 figures, journa

    Pilot cyclic prefixed single carrier communication: Channel estimation and equalization

    Get PDF
    Cyclic prefixed single carrier (CP-SC) has emerged as a promising technique for wideband wireless communication. The cyclic prefix (CP) in CP-SC costs some bandwidth, but it cannot be used for channel estimation in fast-variant channel environment. In this letter, a new scheme is proposed for CP-SC which not only adds a CP but also a suffix. With the aid of the CP and suffix, channel responses can be resolved by the fast Fourier transform. The additional known symbols also ensure input symbols recoverable regardless of the channel null locations. Better synchronization is also possible. © 2005 IEEE.published_or_final_versio

    Towards low-cost gigabit wireless systems at 60 GHz

    Get PDF
    The world-wide availability of the huge amount of license-free spectral space in the 60 GHz band provides wide room for gigabit-per-second (Gb/s) wireless applications. A commercial (read: low-cost) 60-GHz transceiver will, however, provide limited system performance due to the stringent link budget and the substantial RF imperfections. The work presented in this thesis is intended to support the design of low-cost 60-GHz transceivers for Gb/s transmission over short distances (a few meters). Typical applications are the transfer of high-definition streaming video and high-speed download. The presented work comprises research into the characteristics of typical 60-GHz channels, the evaluation of the transmission quality as well as the development of suitable baseband algorithms. This can be summarized as follows. In the first part, the characteristics of the wave propagation at 60 GHz are charted out by means of channel measurements and ray-tracing simulations for both narrow-beam and omni-directional configurations. Both line-of-sight (LOS) and non-line-of-sight (NLOS) are considered. This study reveals that antennas that produce a narrow beam can be used to boost the received power by tens of dBs when compared with omnidirectional configurations. Meanwhile, the time-domain dispersion of the channel is reduced to the order of nanoseconds, which facilitates Gb/s data transmission over 60-GHz channels considerably. Besides the execution of measurements and simulations, the influence of antenna radiation patterns is analyzed theoretically. It is indicated to what extent the signal-to-noise ratio, Rician-K factor and channel dispersion are improved by application of narrow-beam antennas and to what extent these parameters will be influenced by beam pointing errors. From both experimental and analytical work it can be concluded that the problem of the stringent link-budget can be solved effectively by application of beam-steering techniques. The second part treats wideband transmission methods and relevant baseband algorithms. The considered schemes include orthogonal frequency division multiplexing (OFDM), multi-carrier code division multiple access (MC-CDMA) and single carrier with frequency-domain equalization (SC-FDE), which are promising candidates for Gb/s wireless transmission. In particular, the optimal linear equalization in the frei quency domain and associated implementation issues such as synchronization and channel estimation are examined. Bit error rate (BER) expressions are derived to evaluate the transmission performance. Besides the linear equalization techniques, a low-complexity inter-symbol interference cancellation technique is proposed to achieve much better performance of code-spreading systems such as MC-CDMA and SC-FDE. Both theoretical analysis and simulations demonstrate that the proposed scheme offers great advantages as regards both complexity and performance. This makes it particularly suitable for 60-GHz applications in multipath environments. The third part treats the influence of quantization and RF imperfections on the considered transmission methods in the context of 60-GHz radios. First, expressions for the BER are derived and the influence of nonlinear distortions caused by the digital-to-analog converters, analog-to-digital converters and power amplifiers on the BER performance is examined. Next, the BER performance under the influence of phase noise and IQ imbalance is evaluated for the case that digital compensation techniques are applied in the receiver as well as for the case that such techniques are not applied. Finally, a baseline design of a low-cost Gb/s 60-GHz transceiver is presented. It is shown that, by application of beam-steering in combination with SC-FDE without advanced channel coding, a data rate in the order of 2 Gb/s can be achieved over a distance of 10 meters in a typical NLOS indoor scenario

    Design and Experiment of Frequency Offset Estimation and Compensation in High-speed Underwater Acoustic Communication

    Get PDF
    In underwater acoustic (UWA) communication, Doppler effect is particularly severe due to the slow velocity of sound and the complex variant UWA channel environment. Carrier frequency offset (CFO) can result in extension and compression of the received signal in time domain and has a direct effect on the performance of decoding. In this paper, we propose a new scheme of CFO estimation and compensation for a high speed UWA communication system. There are three steps including coarse CFO estimation, fine CFO estimation and linear interpolation, which are taken to estimate and compensate the CFO. The scheme can eliminate the phenomenon of ambiguous phase and tolerate quick random variation of the CFO in UWA channel. A UWA communication experiment was carried out in December 2012 in the Indian Ocean, off Rottnest Island, Western Australia. With the proposed algorithm in this paper, the UWA system can achieve an average of 1.95% uncoded BER with QPSK modulation at the 1km range and 5.57% with BPSK at the 10km range

    Approaching universal frequency reuse through base station cooperation

    Get PDF
    Base Station (BS) architectures are a promising cellular wireless solution to mitigate the interference issues and to avoid the high frequency reuse factors implemented in conventional systems. Combined with block transmission techniques, such as Orthogonal Frequency-Division Multiplexing (OFDM) for the downlink and Single-Carrier with Frequency-Domain Equalization (SC-FDE) for the uplink, these systems provide a significant performance improvement to the overall system. Block transmission techniques are suitable for broadband wireless communication systems, which have to deal with strongly frequency-selective fading channels and are able to provide high bit rates despite the channel adversities. In BS cooperation schemes users in adjacent cells share the same physical channel and the signals received by each BS are sent to a Central Processing Unit (CPU) that combines the different signals and performs the user detections and/or separation, which can be regarded as a Multi-User Detection (MUD) technique. The work presented in this thesis is focused on the study of uplink transmissions in BS cooperations systems, considering single carrier block transmission schemes and iterative receivers based on the Iterative-Block Decision Feedback Equalization (IB-DFE) concept, which combined with the employment of Cyclic Prefix (CP)-assisted block transmission techniques are appropriate to scenarios with strongly time-dispersive channels. Furthermore, the impact of the sampling and quantization applied to the received signals from each Mobile Terminal (MT) to the corresponding BS is studied, with the achievement of the spectral characterization of the quantization noise. This thesis also provides a conventional analytical model for the BER (Bit Error Rate) performance complemented with an approach to improve its results. Finally, this thesis addresses the contextualization of BS cooperation schemes in clustered C-RAN (Centralized-Radio Access Network)-type solutions.As arquitecturas BS cooperation são uma solução promissora de redes celulares sem fios para atenuar o problema da interferência e evitar os factores de reuso elevados, que se encontram implementados nos sistemas convencionais. Combinadas com técnicas de transmissão por blocos, como o OFDM para o downlink e o SC-FDE no uplink, estes sistemas fornecem uma melhoria significativa no desempenho geral do sistema. Técnicas de transmissão por blocos são adequadas para sistemas de comunicações de banda larga sem fios, que têm que lidar com canais que possuem um forte desvanescimento selectivo na frequência e são capazes de fornecer ligações com taxas de transmissão altas apesar das adversidades do canal. Em esquemas BS cooperation os terminais móveis situados em células adjacentes partilham o mesmo canal físico e os sinais recebidos em cada estação de base são enviados para uma Unidade Central de Processamento (CPU) que combina os diferentes sinais recebidos associados a um dado utilizador e realiza a detecção e/ou separação do mesmo, sendo esta considerada uma técnica de Detecção Multi-Utilizador (MUD). O trabalho apresentado nesta tese concentra o seu estudo no uplink de transmissões em sistemas BS cooperation, considerando transmissões em bloco de esquemas monoportadoras e receptores iterativos baseados no conceito B-DFE, em que quando combinados com a implementação de técnicas de transmissao por blocos assistidas por prefixos cíclicos (CP) são apropriados a cenários com canais fortemente dispersivos no tempo. Além disso, é estudado o impacto do processo de amostragem e quantização aplicados aos sinais recebidos de cada terminal móvel para a estação de base, com a obtenção da caracterização espectral do ruído de quantização. Esta tese também fornece um modelo analítico convencional para a computação do desempenho da taxa de erros de bit (BER), com um método melhorado para o mesmo. Por último, esta tese visa a contextualização dos sistemas BS cooperation em soluções do tipo C-RAN
    corecore