96 research outputs found

    Transparent gap filler solution over a DVB-RCS2 satellite platform in a railway scenario: performance evaluation study

    Get PDF
    In this work, a performance study of a system equipped with a transparent Gap Filler solution in a DVB-RCS2 satellite platform has been provided. In particular, a simulation model based on a 3-state Markov chain, overcoming the blockage status through the introduction of a transparent Gap Filler (using devices on both tunnel sides) has been implemented. The handover time, due to switching mechanism between satellite and Gap Filler, has been taken into account. As reference scenario, the railway market has been considered, which is characterized by a N-LOS condition, due to service disruptions caused by tunnels, vegetation and buildings. The system performance, in terms of end-to-end delay, queue size and packet loss percentage, have been evaluated, in order to prove the goodness of communications in a real railroad path

    Wireless communication, identification and sensing technologies enabling integrated logistics: a study in the harbor environment

    Get PDF
    In the last decade, integrated logistics has become an important challenge in the development of wireless communication, identification and sensing technology, due to the growing complexity of logistics processes and the increasing demand for adapting systems to new requirements. The advancement of wireless technology provides a wide range of options for the maritime container terminals. Electronic devices employed in container terminals reduce the manual effort, facilitating timely information flow and enhancing control and quality of service and decision made. In this paper, we examine the technology that can be used to support integration in harbor's logistics. In the literature, most systems have been developed to address specific needs of particular harbors, but a systematic study is missing. The purpose is to provide an overview to the reader about which technology of integrated logistics can be implemented and what remains to be addressed in the future

    Satellite Communications

    Get PDF
    This study is motivated by the need to give the reader a broad view of the developments, key concepts, and technologies related to information society evolution, with a focus on the wireless communications and geoinformation technologies and their role in the environment. Giving perspective, it aims at assisting people active in the industry, the public sector, and Earth science fields as well, by providing a base for their continued work and thinking

    Adaptive robust video broadcast via satellite

    Get PDF
    © 2016 Springer Science+Business Media New YorkWith increasing demand for multimedia content over channels with limited bandwidth and heavy packet losses, higher coding efficiency and stronger error resiliency is required more than ever before. Both the coding efficiency and error resiliency are two opposing processes that require appropriate balancing. On the source encoding side the video encoder H.264/AVC can provide higher compression with strong error resiliency, while on the channel error correction coding side the raptor code has proven its effectiveness, with only modest overhead required for the recovery of lost data. This paper compares the efficiency and overhead of both the raptor codes and the error resiliency techniques of video standards so that both can be balanced for better compression and quality. The result is also improved by confining the robust stream to the period of poor channel conditions by adaptively switching between the video streams using switching frames introduced in H.264/AVC. In this case the video stream is initially transmitted without error resiliency assuming the channel to be completely error free, and then the robustness is increased based on the channel conditions and/or user demand. The results showed that although switching can increase the peak signal to noise ratio in the presence of losses but at the same time its excessive repetition can be irritating to the viewers. Therefore to evaluate the perceptual quality of the video streams and to find the optimum number of switching during a session, these streams were scored by different viewers for quality of enhancement. The results of the proposed scheme show an increase of 3 to 4 dB in peak signal to noise ratio with acceptable quality of enhancement

    Design of a medium access protocol and scheduling algorithm for multimedia traffic over a DVB-RCS satellite link using a cross-layer approach.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2010.Satellite networks provide an alternative to terrestrial networks where cost and lack of infrastructure are driving parameters. For a satellite network to be cost effective one needs to be able to increase the efficiency of the network: this is accomplished by focusing on the parameters that affect the performance of the system and improving on them where possible. The factors affecting the network performance include the capacity, the propagation delay, the protocol used, and the channel error rate, among others. There are various ways to implement a satellite network depending on the satellite orbit, the architecture used, the access technique used, the radio interfaces used, etc. This thesis work describes the chosen satellite standard, Digital Video Broadcasting – Return Channel via Satellite (DVB-RCS) and the associated Medium Access Control (MAC) protocols. Two protocols were designed and investigated under ideal channel conditions, these being the Combined Free/Demand Assigned Multiple Access with Piggy Backing – Packet Dropping (CF/DAMA-PB-PD) protocol; and the Combined Free/Demand Assigned Multiple Access with Piggy Backing – Prioritised Earliest Deadline First (CF/DAMA-PB-PEDF) protocol, both derived from the Combined Free/Demand Assigned Multiple Access with Piggy Backing (CF/DAMA-PB) protocol. The multimedia traffic models for voice, video and web classes are described, validated through simulations and presented; these provide the heterogeneous vi traffic required for evaluating the performance of the satellite system implemented and the designed protocols. Under the multimedia traffic, CF/DAMA-PB-PD was shown to excel in average packet delay reduction while reducing the overall system throughput. The CF/DAMA-PB-PEDF does not contribute to an improvement over the CF/DAMA-PB-PD protocol. The effects of a non-ideal channel on the CF/DAMA-PB-PD protocol was investigated and presented along with the design of three MAC protocols that take the channel characteristics into account to improve on the system performance. The cross-layer interactions, more specifically the interaction between the physical and data–link layers, were used, investigated and presented. The channel state information in terms of signal-to-noise ratio (SNR) was used to improve the system performance. The five protocols evaluated under non-ideal channel conditions were the CF/DAMA-PB, CF/DAMA-PB-PD, CF/DAMA-PB-BSNRF, CF/DAMA-PB-DD and the CF/DAMA-PB-BSNRF+DD. The best overall performance, both in average packet delay while maintaining good QoS levels and throughput was shown to be that of the CF/DAMA-PB-DD protocol

    Experimental proof of concept of an SDN-based traffic engineering solution for hybrid satellite-terrestrial mobile backhauling

    Get PDF
    This is the peer reviewed version of the following article: Mendoza, F, Ferrus, R, Sallent, O. Experimental proof of concept of an SDN‐based traffic engineering solution for hybrid satellite‐terrestrial mobile backhauling. Int J Satell Commun Network. 2019; 37: 630– 645, which has been published in final form at https://doi.org/10.1002/sat.1303. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingSatellite networks are expected to be an integral part of 5G service deployment. One compelling use case is mobile backhauling, where the exploitation of a satellite component can improve the reach, robustness, and economics of 5G rollout. The envisaged availability of new satellite capacity, together with the development of better integration approaches for the provisioning and operation of the satellite component in a more flexible, agile, and cost-effective manner than done today, are expected to revamp such use case within the 5G ecosystem. In this context, sustained in the architectural designs proposed within H2020 VITAL research project, this paper presents an experimental proof of concept (PoC) of a satellite-terrestrial integration solution that builds upon software-defined networking (SDN) technologies for the realization of end-to-end traffic engineering (E2E TE) in mobile backhauling networks with a satellite component. A laboratory test bed has been developed and validated, consisting of a small-scale private mobile network with a backhaul setting that combines Ethernet-wired links, a satellite link emulator (OpenSAND), OpenFlow switches, and an OpenFlow controller running the network application for E2E TE. Provided results show the operation of a E2E TE application able to enforce different traffic routing and path failure restoration policies as well as the performance impact that it has on the mobile network connectivity services.Peer ReviewedPostprint (author's final draft
    corecore