310 research outputs found

    Path Planning of Mobile Agents using AI Technique

    Get PDF
    In this paper, we study coordinated motion in a swarm robotic system, called a swarm-bot. A swarm-bot is a self-assembling and self-organizing. Artifact composed of a swarm of s-bots, mobile robots with the ability to connect to and is connect from each other. The swarm-bot concept is particularly suited for tasks that require all-terrain navigation abilities, such as space exploration or rescue in collapsed buildings. As a first step toward the development of more complex control strategies, we investigate the case in which a swarm-bot has to explore an arena while avoiding falling into holes. In such a scenario, individual s-bots have sensory–motor limitations that prevent them navigating efficiently. These limitations can be overcome if the s-bots are made to cooperate. In particular, we exploit the s-bots’ ability to physically connect to each other. In order to synthesize the s-bots’ controller, we rely on artificial evolution, which we show to be a powerful tool for the production of simple and effective solutions to the hole avoidance task

    Control and Coordination in a Networked Robotic Platform

    Get PDF
    Control and Coordination of the robots has been widely researched area among the swarm robotics. Usually these swarms are involved in accomplishing tasks assigned to them either one after another or concurrently. Most of the times, the tasks assigned may not need the entire population of the swarm but a subset of them. In this project, emphasis has been given to determination of such subsets of robots termed as ”flock” whose size actually depends on the complexity of the task. Once the flock is determined from the swarm, leader and follower robots are determined which accomplish the task in a controlled and cooperative fashion. Although the entire control system,which is determined for collision free and coordinated environment, is stable, the results show that both wireless (bluetooth) and internet (UDP) communication system can introduce some lag which can lead robot trajectories to an unexpected set. The reason for this is each robot and a corresponding computer is considered as a complete robot and communication between the robot and the computer and between the computers was inevitable. These problems could easily be solved by integrating a computer on the robot or just add a wifi transmitter/receiver on the robot. On going down the lane, by introducing smarter robots with different kinds of sensors this project could be extended on a large scale for varied heterogenous and homogenous applications

    Research interests: their dynamics, structures and applications in unifying search and reasoning

    Get PDF
    Most scientific publication information, which may reflects scientists' research interests, is publicly available on the Web. Understanding the characteristics of research interests from previous publications may help to provide better services for scientists in the Web age. In this paper, we introduce some parameters to track the evolution process of research interests, we analyze their structural and dynamic characteristics. According to the observed characteristics of research interests, under the framework of unifying search and reasoning (ReaSearch), we propose interests-based unification of search and reasoning (I-ReaSearch). Under the proposed I-ReaSearch method, we illustrate how research interests can be used to improve literature search on the Web. According to the relationship between an author's own interests and his/her co-authors interests, social group interests are also used to refine the literature search process. Evaluation from both the user satisfaction and the scalability point of view show that the proposed I-ReaSearch method provides a user centered and practical way to problem solving on the Web. The efforts provide some hints and various methods to support personalized search, and can be considered as a step forward user centric knowledge retrieval on the Web. From the standpoint of the Active Media Technology (AMT) on the Wisdom Web, in this paper, the study on the characteristics of research interests is based on complex networks and human dynamics, which can be considered as an effort towards utilizing information physics to discover and explain the phenomena related to research interests of scientists. The application of research interests aims at providing scientific researchers best means and best ends in an active way for literature search on the Web. © 2010 Springer Science+Business Media, LLC

    Guided Self-Organizing Particle Systems for Basic Problem Solving

    Get PDF
    In recent years researchers have shown increasing interest in swarm intelligence as a promising approach to adaptive distributed problem solving. Swarm intelligence consists of techniques inspired by nature, especially social insects and aggregations of animals, and even human interactions. They are based on self-organization (a system's overall behavior emerges from the local interactions among its relatively simple components) and are often decentralized and massively distributed. Particle systems are an approach to swarm intelligence that focus on collective movements, and have been used successfully for applications such as computer animation in graphics and control of movements of autonomous robotic vehicle teams. However, particle system techniques have not been applied substantially to problem solving beyond merely collective navigational tasks. In this dissertation, I present an extension to particle systems that incorporates top-down, high-level control to self-organizing mobile agents, thereby guiding the self-organizing process and making it possible for particle systems to undertake problem solving directed by goal-oriented behavior while retaining their decentralized, local nature. This extended particle system approach is critically evaluated through three experimental studies that are adapted from well-known problems in multi-agent systems: search and collect, cooperative transport and logistics. The results provide evidence that extended particle systems are capable of exhibiting behavior important for distributed problem solving, such as cooperative sensing, division of labor, sharing of information, and developing global strategies through local interactions. They also show that aggregated movements can be utilized to create coordination at different levels and phases of the performance of a task, whether those include navigation or not, making extended particle systems a useful tool in the construction of adaptive distributed systems

    Individuality and the collective in AI agents: Explorations of shared consciousness and digital homunculi in the metaverse for cultural heritage

    Get PDF
    The confluence of extended reality (XR) technologies, including augmented and virtual reality, with large language models (LLM) marks a significant advancement in the field of digital humanities, opening uncharted avenues for the representation of cultural heritage within the burgeoning metaverse. This paper undertakes an examination of the potentialities and intricacies of such a convergence, focusing particularly on the creation of digital homunculi or changelings. These virtual beings, remarkable for their sentience and individuality, are also part of a collective consciousness, a notion explored through a thematic comparison in science fiction with the Borg and the Changelings in the Star Trek universe. Such a comparison offers a metaphorical framework for discussing complex phenomena such as shared consciousness and individuality, illuminating their bearing on perceptions of self and awareness. Further, the paper considers the ethical implications of these concepts, including potential loss of individuality and the challenges inherent to accurate representation of historical figures and cultures. The latter necessitates collaboration with cultural experts, underscoring the intersectionality of technological innovation and cultural sensitivity. Ultimately, this chapter contributes to a deeper understanding of the technical aspects of integrating large language models with immersive technologies and situates these developments within a nuanced cultural and ethical discourse. By offering a comprehensive overview and proposing clear recommendations, the paper lays the groundwork for future research and development in the application of these technologies within the unique context of cultural heritage representation in the metaverse

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    SWARM INTELLIGENCE AND STIGMERGY: ROBOTIC IMPLEMENTATION OF FORAGING BEHAVIOR

    Get PDF
    Swarm intelligence in multi-robot systems has become an important area of research within collective robotics. Researchers have gained inspiration from biological systems and proposed a variety of industrial, commercial, and military robotics applications. In order to bridge the gap between theory and application, a strong focus is required on robotic implementation of swarm intelligence. To date, theoretical research and computer simulations in the field have dominated, with few successful demonstrations of swarm-intelligent robotic systems. In this thesis, a study of intelligent foraging behavior via indirect communication between simple individual agents is presented. Models of foraging are reviewed and analyzed with respect to the system dynamics and dependence on important parameters. Computer simulations are also conducted to gain an understanding of foraging behavior in systems with large populations. Finally, a novel robotic implementation is presented. The experiment successfully demonstrates cooperative group foraging behavior without direct communication. Trail-laying and trail-following are employed to produce the required stigmergic cooperation. Real robots are shown to achieve increased task efficiency, as a group, resulting from indirect interactions. Experimental results also confirm that trail-based group foraging systems can adapt to dynamic environments
    corecore