11 research outputs found

    Earth Observations for Addressing Global Challenges

    Get PDF
    "Earth Observations for Addressing Global Challenges" presents the results of cutting-edge research related to innovative techniques and approaches based on satellite remote sensing data, the acquisition of earth observations, and their applications in the contemporary practice of sustainable development. Addressing the urgent tasks of adaptation to climate change is one of the biggest global challenges for humanity. As His Excellency António Guterres, Secretary-General of the United Nations, said, "Climate change is the defining issue of our time—and we are at a defining moment. We face a direct existential threat." For many years, scientists from around the world have been conducting research on earth observations collecting vital data about the state of the earth environment. Evidence of the rapidly changing climate is alarming: according to the World Meteorological Organization, the past two decades included 18 of the warmest years since 1850, when records began. Thus, Group on Earth Observations (GEO) has launched initiatives across multiple societal benefit areas (agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather), such as the Global Forest Observations Initiative, the GEO Carbon and GHG Initiative, the GEO Biodiversity Observation Network, and the GEO Blue Planet, among others. The results of research that addressed strategic priorities of these important initiatives are presented in the monograph

    Status of the Global Observing System for Climate

    Get PDF
    Status of the Global Observing System for Climat

    The WWRP Polar Prediction Project (PPP)

    Get PDF
    Mission statement: “Promote cooperative international research enabling development of improved weather and environmental prediction services for the polar regions, on time scales from hours to seasonal”. Increased economic, transportation and research activities in polar regions are leading to more demands for sustained and improved availability of predictive weather and climate information to support decision-making. However, partly as a result of a strong emphasis of previous international efforts on lower and middle latitudes, many gaps in weather, sub-seasonal and seasonal forecasting in polar regions hamper reliable decision making in the Arctic, Antarctic and possibly the middle latitudes as well. In order to advance polar prediction capabilities, the WWRP Polar Prediction Project (PPP) has been established as one of three THORPEX (THe Observing System Research and Predictability EXperiment) legacy activities. The aim of PPP, a ten year endeavour (2013-2022), is to promote cooperative international research enabling development of improved weather and environmental prediction services for the polar regions, on hourly to seasonal time scales. In order to achieve its goals, PPP will enhance international and interdisciplinary collaboration through the development of strong linkages with related initiatives; strengthen linkages between academia, research institutions and operational forecasting centres; promote interactions and communication between research and stakeholders; and foster education and outreach. Flagship research activities of PPP include sea ice prediction, polar-lower latitude linkages and the Year of Polar Prediction (YOPP) - an intensive observational, coupled modelling, service-oriented research and educational effort in the period mid-2017 to mid-2019

    Electromagnetic Radiation

    Get PDF
    The application of electromagnetic radiation in modern life is one of the most developing technologies. In this timely book, the authors comprehensively treat two integrated aspects of electromagnetic radiation, theory and application. It covers a wide scope of practical topics, including medical treatment, telecommunication systems, and radiation effects. The book sections have clear presentation, some state of the art examples, which makes this book an indispensable reference book for electromagnetic radiation applications

    La variabilité régionale du niveau de la mer

    Get PDF
    Au cours du XXème siècle, les mesures marégraphiques ont permis d'estimer la hausse du niveau de la mer global à 1.7 mm.a-1. Depuis deux décennies, les observations faites par les satellites altimétriques indiquent une hausse du niveau de la mer plus rapide, de 3.2 mm. a-1 sur la période 1993-2011. Grâce à leur couverture quasi-globale, les observations spatiales ont aussi révélé une forte variabilité régionale dans la hausse du niveau de la mer qui dépasse de beaucoup la hausse moyenne globale dans de nombreuses régions du globe. Cette composante régionale qui s'ajoute à la hausse globale pour donner le niveau de la mer total local, est essentielle dans l'étude des impacts de la hausse du niveau de la mer sur les régions côtières et les îles basses. Dans cette thèse, nous analysons les observations de la variabilité régionale de la hausse du niveau de la mer, nous proposons une reconstruction de cette variabilité régionale depuis 1950 (i.e. avant l'avènement de l'altimétrie spatiale) et nous étudions ses causes et ses origines. Tout d'abord, nous proposons une reconstruction de la variabilité régionale du niveau de la mer dans le passé (avant la période altimétrique) en combinant des données marégraphiques avec les structures spatiales propres de l'océan déduites des modèles d'océan. Cette méthode permet de reconstruire le niveau de la mer en 2 dimensions depuis 1950, sur la majeure partie du globe, avec une résolution proche de celle de l'altimétrie spatiale. Ensuite, nous appliquons la méthode de reconstruction pour estimer la variabilité régionale de la hausse du niveau de la mer passée dans trois régions sensibles au réchauffement climatique : le Pacifique tropical, la mer Méditerranée et l'océan Arctique. Nous en déduisons pour ces régions la hausse totale ( régionale plus moyenne globale) du niveau de la mer local au cours des dernières décennies. Pour les sites où l'on dispose de mesures du mouvement de la croûte terrestre, nous évaluons la hausse local du niveau de la mer relatif (i.e. hausse du niveau de la mer totale plus mouvement de la croûte local) depuis 1950. Le but est de permettre les études de l'impact local de la hausse du niveau de la mer aux échelles climatiques. Enfin, nous analysons l'origine de la variabilité régionale de la hausse du niveau de la mer pour déterminer si elle est due à l'activité anthropique ou si elle résulte de la variabilité naturelle du système climatique. Nous nous focalisons sur le Pacifque tropical qui est marqué par une très forte variabilité régionale de la hausse du niveau de la mer depuis 1993. Grâce a la reconstruction du niveau de la mer depuis 1950, nous montrons que cette variabilité régionale récente (17 dernières années) n'est pas stationnaire dans le temps mais qu'elle fluctue en lien avec une basse fréquence du mode de variabilité ENSO. Avec les modèles de climat du projet CMIP3, nous montrons de plus que cette variabilité régionale est essentiellement d'origine naturelle (variabilité interne du système climatique) et que l'impact anthropique y est trop faible pour l'instant pour y être détecté.Over the XXth century, tide gauge records indicate a rise in global sea level of 1.7 mm.a-1. For the past two decades, satellite altimetry data indicate a faster sea level rise of 3.2 mm.a-1 (period 1993-2011). Thanks to its global coverage, they also reveal a strong regional variability in sea level rise that is several times bigger than the global rise in many regions of the world. This regional signal, which must be added to the global sea level rise to compute the total sea level signal, is essential when assessing the potential impacts of sea level rise in coastal areas and low lying islands. In this thesis, we analyse the observed regional variability in sea level rise from satellite altimetry (since 1993), we propose a reconstruction of the past regional variability since 1950 (i.e. prior to altimetry) and we discuss its causes (thermal expansion of the ocean plus land ice loss) and origins (from natural or anthropogenic origin). First, we propose a reconstruction of the sea level variations for the past decades (before the altimetry era) by combining tide gauge records with the principal spatial structures of the ocean deduced from ocean general circulation models. This method enables to reconstruct the 2 dimensional sea level variations since 1950 with a spatial coverage and resolution similar to the satellite altimetry ones. In the second part of this thesis, the reconstruction method is applied to estimate the past regional variability in three regions which are particularly vulnerable to sea level rise: the tropical Pacific, the Mediterranean sea and the Arctic ocean. For each region, the reconstruction gives an estimation of the total (regional component plus global mean) 2-dimensional sea level rise over the past decades. For the sites where vertical crustal motion monitoring is available, we compute as well the total relative sea level (i.e. total sea level rise plus the local vertical crustal motion) since 1950. The objective is to provide estimates of the relative local sea level rise at climatic time scales to allow further studies on the coastal impacts of sea level rise. In the last part of this thesis, the question of the origins of the regional variability in sea level rise is addressed. We examine whether the regional variability in observed sea level rise since 1993 is a consequence of the anthropogenic activity or if it results essentially from the natural variability of the climate system. We focus on the Tropical Pacific where the regional variability in sea level rise is particularly strong since 1993. On the basis of the reconstruction of the sea level variations since 1950, we show that the recent regional variability in sea level rise observed by satellite (over the last 17 years) in this region is not stationnary. It fluctuates with time, following some low frequency of the ENSO climate mode of variability. With the CMIP3 climate models, we show that this regional variability is dominated by the natural variability of the climate system (essentially by the internal variability of the climate system) and that the signature of the anthropogenic activity is still too weak in this region to be detected
    corecore