3,198 research outputs found

    Global sensitivity analysis of the single particle lithium-ion battery model with electrolyte

    Get PDF
    The importance of global sensitivity analysis (GSA) has been well established in many scientific areas. However, despite its critical role in evaluating a model’s plausibility and relevance, most lithium ion battery models are published without any sensitivity analysis. In order to improve the lifetime performance of battery packs, researchers are investigating the application of physics based electrochemical models, such as the single particle model with electrolyte (SPMe). This is a challenging research area from both the parameter estimation and modelling perspective. One key challenge is the number of unknown parameters: the SPMe contains 31 parameters, many of which are themselves non-linear functions of other parameters. As such, relatively few authors have tackled this parameter estimation problem. This is exacerbated because there are no GSAs of the SPMe which have been published previously. This article addresses this gap in the literature and identifies the most sensitive parameter, preventing time being wasted on refining parameters which the output is insensitive to

    Accuracy versus simplicity in online battery model identification

    Get PDF
    This paper presents a framework for battery modeling in online, real-time applications where accuracy is important but speed is the key. The framework allows users to select model structures with the smallest number of parameters that is consistent with the accuracy requirements of the target application. The tradeoff between accuracy and speed in a battery model identification process is explored using different model structures and parameter-fitting algorithms. Pareto optimal sets are obtained, allowing a designer to select an appropriate compromise between accuracy and speed. In order to get a clearer understanding of the battery model identification problem, “identification surfaces” are presented. As an outcome of the battery identification surfaces, a new analytical solution is derived for battery model identification using a closed-form formula to obtain a battery’s ohmic resistance and open circuit voltage from measurement data. This analytical solution is used as a benchmark for comparison of other fitting algorithms and it is also used in its own right in a practical scenario for state-of-charge estimation. A simulation study is performed to demonstrate the effectiveness of the proposed framework and the simulation results are verified by conducting experimental tests on a small NiMH battery pack

    Current and State of Charge Estimation of Lithium-Ion Battery Packs Using Distributed Fractional Extended Kalman Filters

    Get PDF
    In this paper, a method for current and state of charge estimation of lithium-ion battery packs is proposed. On the basis of a fractional 1-RQ equivalent circuit cell model, a string model containing cells in serial connection, and a pack model containing strings in parallel connection is built up. In order to reduce computational costs, the model is distributed string-wise into subsystems. An algorithm using distributed fractional extended Kalman filters is applied to estimate the state of charge of all cells of each string, locally. To avoid costly measurements of numerous currents, a model based calculation is proposed which describes how the total battery current is split up between the strings. The algorithm is tested and validated using measurement data

    A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors

    Get PDF
    Electrochemical energy storage systems play an important role in diverse applications, such as electrified transportation and integration of renewable energy with the electrical grid. To facilitate model-based management for extracting full system potentials, proper mathematical models are imperative. Due to extra degrees of freedom brought by differentiation derivatives, fractional-order models may be able to better describe the dynamic behaviors of electrochemical systems. This paper provides a critical overview of fractional-order techniques for managing lithium-ion batteries, lead-acid batteries, and supercapacitors. Starting with the basic concepts and technical tools from fractional-order calculus, the modeling principles for these energy systems are presented by identifying disperse dynamic processes and using electrochemical impedance spectroscopy. Available battery/supercapacitor models are comprehensively reviewed, and the advantages of fractional types are discussed. Two case studies demonstrate the accuracy and computational efficiency of fractional-order models. These models offer 15–30% higher accuracy than their integer-order analogues, but have reasonable complexity. Consequently, fractional-order models can be good candidates for the development of advanced b attery/supercapacitor management systems. Finally, the main technical challenges facing electrochemical energy storage system modeling, state estimation, and control in the fractional-order domain, as well as future research directions, are highlighted

    Advanced Battery Technologies: New Applications and Management Systems

    Get PDF
    In recent years, lithium-ion batteries (LIBs) have been increasingly contributing to the development of novel engineering systems with energy storage requirements. LIBs are playing an essential role in our society, as they are being used in a wide variety of applications, ranging from consumer electronics, electric mobility, renewable energy storage, biomedical applications, or aerospace systems. Despite the remarkable achievements and applicability of LIBs, there are several features within this technology that require further research and improvements. In this book, a collection of 10 original research papers addresses some of those key features, including: battery testing methodologies, state of charge and state of health monitoring, and system-level power electronics applications. One key aspect to emphasize when it comes to this book is the multidisciplinary nature of the selected papers. The presented research was developed at university departments, institutes and organizations of different disciplines, including Electrical Engineering, Control Engineering, Computer Science or Material Science, to name a few examples. The overall result is a book that represents a coherent collection of multidisciplinary works within the prominent field of LIBs

    Online full-parameter identification and SOC estimation of lithium-ion battery pack based on composite electrochemical-dual circuit polarization modeling.

    Get PDF
    A new composite electrochemistry-dual circuit polarization model (E-DCP) is proposed by combining the advantages of various electrochemical empirical models in this paper. Then, the multi-innovation least squares (MILS) algorithm is used to perform online full parameter identification for the E-DCP model in order to improve data usage efficiency and parameter identification accuracy. In addition, on the basis of the E-DCP model, the MILS and the extended Kalman filter (EKF) are combined to enhance the state estimation accuracy of the battery management system (BMS). Finally, the model and the algorithm are both verified through urban dynamometer driving schedule (UDDS) and the complex charge-discharge loop test. The results indicate that the accuracy of E-DCP is relatively high under different working conditions, and the errors of state of charge (SOC) estimation after the combination of MILS and EKF are all within 2.2%. This lays a concrete foundation for practical use of the BMS in the future

    Battery Management System for Electric Drive Vehicles – Modeling, State Estimation and Balancing

    Get PDF
    Electric-drive vehicles (EDVs) have drawn more and more attention worldwide. As one of the most important parts of EDVs, battery management systems (BMSs) manage the huge amount of battery cells in EDVs and assures their safety. To achieve these goals, researches in BMS, such as battery modeling, battery state estimation, and battery balancing have gained a new vigor. This chapter will review the existing researches and introduce several advances in these areas
    • …
    corecore