49 research outputs found

    Two-Level discretization techniques for ground state computations of Bose-Einstein condensates

    Get PDF
    This work presents a new methodology for computing ground states of Bose-Einstein condensates based on finite element discretizations on two different scales of numerical resolution. In a pre-processing step, a low-dimensional (coarse) generalized finite element space is constructed. It is based on a local orthogonal decomposition and exhibits high approximation properties. The non-linear eigenvalue problem that characterizes the ground state is solved by some suitable iterative solver exclusively in this low-dimensional space, without loss of accuracy when compared with the solution of the full fine scale problem. The pre-processing step is independent of the types and numbers of bosons. A post-processing step further improves the accuracy of the method. We present rigorous a priori error estimates that predict convergence rates H^3 for the ground state eigenfunction and H^4 for the corresponding eigenvalue without pre-asymptotic effects; H being the coarse scale discretization parameter. Numerical experiments indicate that these high rates may still be pessimistic.Comment: Accepted for publication in SIAM J. Numer. Anal., 201

    Sobolev gradient flow for the Gross-Pitaevskii eigenvalue problem: global convergence and computational efficiency

    Get PDF
    We propose a new normalized Sobolev gradient flow for the Gross-Pitaevskii eigenvalue problem based on an energy inner product that depends on time through the density of the flow itself. The gradient flow is well-defined and converges to an eigenfunction. For ground states we can quantify the convergence speed as exponentially fast where the rate depends on spectral gaps of a linearized operator. The forward Euler time discretization of the flow yields a numerical method which generalizes the inverse iteration for the nonlinear eigenvalue problem. For sufficiently small time steps, the method reduces the energy in every step and converges globally in H1H^1 to an eigenfunction. In particular, for any nonnegative starting value, the ground state is obtained. A series of numerical experiments demonstrates the computational efficiency of the method and its competitiveness with established discretizations arising from other gradient flows for this problem

    A numerical study of vortex nucleation in 2D rotating Bose-Einstein condensates

    Full text link
    This article introduces a new numerical method for the minimization under constraints of a discrete energy modeling multicomponents rotating Bose-Einstein condensates in the regime of strong confinement and with rotation. Moreover, we consider both segregation and coexistence regimes between the components. The method includes a discretization of a continuous energy in space dimension 2 and a gradient algorithm with adaptive time step and projection for the minimization. It is well known that, depending on the regime, the minimizers may display different structures, sometimes with vorticity (from singly quantized vortices, to vortex sheets and giant holes). In order to study numerically the structures of the minimizers, we introduce in this paper a numerical algorithm for the computation of the indices of the vortices, as well as an algorithm for the computation of the indices of vortex sheets. Several computations are carried out, to illustrate the efficiency of the method, to cover different physical cases, to validate recent theoretical results as well as to support conjectures. Moreover, we compare this method with an alternative method from the literature
    corecore