92 research outputs found

    Querying out-of-vocabulary words in lexicon-based keyword spotting

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00521-016-2197-8[EN] Lexicon-based handwritten text keyword spotting (KWS) has proven to be a faster and more accurate alternative to lexicon-free methods. Nevertheless, since lexicon-based KWS relies on a predefined vocabulary, fixed in the training phase, it does not support queries involving out-of-vocabulary (OOV) keywords. In this paper, we outline previous work aimed at solving this problem and present a new approach based on smoothing the (null) scores of OOV keywords by means of the information provided by ``similar'' in-vocabulary words. Good results achieved using this approach are compared with previously published alternatives on different data sets.This work was partially supported by the Spanish MEC under FPU Grant FPU13/06281, by the Generalitat Valenciana under the Prometeo/2009/014 Project Grant ALMA-MATER, and through the EU Projects: HIMANIS (JPICH programme, Spanish grant Ref. PCIN-2015-068) and READ (Horizon-2020 programme, grant Ref. 674943).Puigcerver, J.; Toselli, AH.; Vidal, E. (2016). Querying out-of-vocabulary words in lexicon-based keyword spotting. Neural Computing and Applications. 1-10. https://doi.org/10.1007/s00521-016-2197-8S110Almazan J, Gordo A, Fornes A, Valveny E (2013) Handwritten word spotting with corrected attributes. In: 2013 IEEE international conference on computer vision (ICCV), pp 1017–1024. doi: 10.1109/ICCV.2013.130Amengual JC, Vidal E (2000) On the estimation of error-correcting parameters. In: Proceedings 15th international conference on pattern recognition, 2000, vol 2, pp 883–886Fernández D, Lladós J, Fornés A (2011) Handwritten word spotting in old manuscript images using a pseudo-structural descriptor organized in a hash structure. In: Vitri'a J, Sanches JM, Hern'andez M (eds) Pattern recognition and image analysis: Proceedings of 5th Iberian Conference, IbPRIA 2011, Las Palmas de Gran Canaria, Spain, June 8–10. Springer, Berlin, Heidelberg, pp 628–635. doi: 10.1007/978-3-642-21257-4_78Fischer A, Keller A, Frinken V, Bunke H (2012) Lexicon-free handwritten word spotting using character HMMs. Pattern Recognit Lett 33(7):934–942. doi: 10.1016/j.patrec.2011.09.009 Special Issue on Awards from ICPR 2010Fornés A, Frinken V, Fischer A, Almazán J, Jackson G, Bunke H (2011) A keyword spotting approach using blurred shape model-based descriptors. In: Proceedings of the 2011 workshop on historical document imaging and processing, pp 83–90. ACMFrinken V, Fischer A, Manmatha R, Bunke H (2012) A novel word spotting method based on recurrent neural networks. IEEE Trans Pattern Anal Mach Intell 34(2):211–224. doi: 10.1109/TPAMI.2011.113Gatos B, Pratikakis I (2009) Segmentation-free word spotting in historical printed documents. In: 10th International conference on document analysis and recognition, 2009. ICDAR’09, pp 271–275. IEEEJelinek F (1998) Statistical methods for speech recognition. MIT Press, CambridgeKneser R, Ney H (1995) Improved backing-off for N-gram language modeling. In: International conference on acoustics, speech and signal processing (ICASSP ’95), vol 1, pp 181–184. IEEE Computer Society, Los Alamitos, CA, USA. doi: http://doi.ieeecomputersociety.org/10.1109/ICASSP.1995.479394Kolcz A, Alspector J, Augusteijn M, Carlson R, Popescu GV (2000) A line-oriented approach to word spotting in handwritten documents. Pattern Anal Appl 3:153–168. doi: 10.1007/s100440070020Konidaris T, Gatos B, Ntzios K, Pratikakis I, Theodoridis S, Perantonis SJ (2007) Keyword-guided word spotting in historical printed documents using synthetic data and user feedback. Int J Doc Anal Recognit 9(2–4):167–177Kumar G, Govindaraju V (2014) Bayesian active learning for keyword spotting in handwritten documents. In: 2014 22nd International conference on pattern recognition (ICPR), pp 2041–2046. IEEELevenshtein VI (1966) Binary codes capable of correcting deletions, insertions and reversals. Sov Phys Dokl 10(8):707–710Manning CD, Raghavan P, Schtze H (2008) Introduction to information retrieval. Cambridge University Press, New YorkMarti UV, Bunke H (2002) The IAM-database: an English sentence database for offline handwriting recognition. Int J Doc Anal Recognit 5(1):39–46. doi: 10.1007/s100320200071Puigcerver J, Toselli AH, Vidal E (2014) Word-graph and character-lattice combination for KWS in handwritten documents. In: 14th International conference on frontiers in handwriting recognition (ICFHR), pp 181–186Puigcerver J, Toselli AH, Vidal E (2014) Word-graph-based handwriting keyword spotting of out-of-vocabulary queries. In: 22nd International conference on pattern recognition (ICPR), pp 2035–2040Puigcerver J, Toselli AH, Vidal E (2015) A new smoothing method for lexicon-based handwritten text keyword spotting. In: 7th Iberian conference on pattern recognition and image analysis. SpringerRath T, Manmatha R (2007) Word spotting for historical documents. Int J Doc Anal Recognit 9:139–152Robertson S. (2008) A new interpretation of average precision. In: Proceedings of the international. ACM SIGIR conference on research and development in information retrieval (SIGIR ’08), pp 689–690. ACM, New York, NY, USA. doi: http://doi.acm.org/10.1145/1390334.1390453Rodriguez-Serrano JA, Perronnin F (2009) Handwritten word-spotting using hidden markov models and universal vocabularies. Pattern Recognit 42(9):2106–2116. doi: 10.1016/j.patcog.2009.02.005 . http://www.sciencedirect.com/science/article/pii/S0031320309000673Rusinol M, Aldavert D, Toledo R, Llados J (2011) Browsing heterogeneous document collections by a segmentation-free word spotting method. In: International conference on document analysis and recognition (ICDAR), pp 63–67. doi: 10.1109/ICDAR.2011.22Shang H, Merrettal T (1996) Tries for approximate string matching. IEEE Trans Knowl Data Eng 8(4):540–547Toselli AH, Vidal E (2013) Fast HMM-Filler approach for key word spotting in handwritten documents. In: Proceedings of the 12th international conference on document analysis and recognition (ICDAR), pp 501–505Toselli AH, Vidal E (2014) Word-graph based handwriting key-word spotting: impact of word-graph size on performance. In: 11th IAPR international workshop on document analysis systems (DAS), pp 176–180. IEEEToselli AH, Vidal E, Romero V, Frinken V (2013) Word-graph based keyword spotting and indexing of handwritten document images. Technical report, Universitat Politécnica de ValénciaVidal E, Toselli AH, Puigcerver J (2015) High performance query-by-example keyword spotting using query-by-string techniques. In: 2015 13th International conference on document analysis and recognition (ICDAR), pp 741–745. IEEEWoodland P, Leggetter C, Odell J, Valtchev V, Young S (1995) The 1994 HTK large vocabulary speech recognition system. In: International conference on acoustics, speech, and signal processing (ICASSP ’95), vol 1, pp 73 –76. doi: 10.1109/ICASSP.1995.479276Wshah S, Kumar G, Govindaraju V (2012) Script independent word spotting in offline handwritten documents based on hidden markov models. In: 2012 International conference on frontiers in handwriting recognition (ICFHR), pp 14–19. doi: 10.1109/ICFHR.2012.26

    Advances in Handwritten Keyword Indexing and Search Technologies

    Get PDF
    Many extensive manuscript collections are available in archives and libraries all over the world, but their textual contents remain practically inaccessible, buried under thousands of terabytes worth of high-resolution images. If perfect or sufficiently accurate text-image transcripts were available, textual content could be indexed directly for plaintext access using conventional information retrieval systems. But the results of fully automated transcriptions generally lack the level of accuracy needed for reliable text indexing and search purposes. Additionally, manual or even computer-assited transcription is entierely unsustainable when dealing with the extensive image collections typically considered for indexing. This paper explains how accurate indexing and search commands can be implemented directly on the digital images themselves without the need to explicitly resort to image transcripts. Results obtained using the proposed techniques on several relevant historical data sets are presented, clearly supporting the considerable potential of these technologies

    Out of vocabulary queries for word graph-based keyword spotting

    Full text link
    [EN] In this master thesis several approaches are presented to support out of vocabulary queries in a Word Graph (WG)-based Keyword Spotting (KWS) application for handwritten text lines. Generally, KWS assigns a score that estimates how likely is that a given keyword is present in a certain line image. WGbased KWS offers very fast search times but assumes a closed vocabulary and assigns null scores to any word not included in such vocabulary. This work tries to provide to the WG-based KWS the flexibility of non-restricted searches and the speed achieved by the usage of WG.[ES] En este trabajo fin de máster se presentan distintas alternativas para dar soporte a búsquedas con palabras fuera del vocabulario en Keyword Spotting (KWS) sobre líneas de texto manuscrito usando Word Graphs (WG). En general, en KWS se asigna una puntuación que indica cuán probable es que una palabra aparezca en una imagen de una línea de texto. El KWS basado en WG ofrece tiempos de búsqueda muy rápidos pero asume un vocabulario cerrado y asigna puntuaciones nulas a las palabras no incluidas en él. Con éste trabajo se pretende proporcionar al KWS basado en WG de la flexibilidad de búsquedas no restringidas al vocabulario de entrenamiento, junto a la velocidad que se consigue con el uso de WG.Puigcerver I Pérez, J. (2014). Out of vocabulary queries for word graph-based keyword spotting. http://hdl.handle.net/10251/53360Archivo delegad

    Cross-document word matching for segmentation and retrieval of Ottoman divans

    Get PDF
    Cataloged from PDF version of article.Motivated by the need for the automatic indexing and analysis of huge number of documents in Ottoman divan poetry, and for discovering new knowledge to preserve and make alive this heritage, in this study we propose a novel method for segmenting and retrieving words in Ottoman divans. Documents in Ottoman are dif- ficult to segment into words without a prior knowledge of the word. In this study, using the idea that divans have multiple copies (versions) by different writers in different writing styles, and word segmentation in some of those versions may be relatively easier to achieve than in other versions, segmentation of the versions (which are difficult, if not impossible, with traditional techniques) is performed using information carried from the simpler version. One version of a document is used as the source dataset and the other version of the same document is used as the target dataset. Words in the source dataset are automatically extracted and used as queries to be spotted in the target dataset for detecting word boundaries. We present the idea of cross-document word matching for a novel task of segmenting historical documents into words. We propose a matching scheme based on possible combinations of sequence of sub-words. We improve the performance of simple features through considering the words in a context. The method is applied on two versions of Layla and Majnun divan by Fuzuli. The results show that, the proposed word-matching-based segmentation method is promising in finding the word boundaries and in retrieving the words across documents

    The ESPOSALLES database: An ancient marriage license corpus for off-line handwriting recognition

    Full text link
    NOTICE: this is the author’s version of a work that was accepted for publication in Pattern Recognition. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Pattern RecognitionVolume 46, Issue 6, June 2013, Pages 1658–1669 DOI: 10.1016/j.patcog.2012.11.024[EN] Historical records of daily activities provide intriguing insights into the life of our ancestors, useful for demography studies and genealogical research. Automatic processing of historical documents, however, has mostly been focused on single works of literature and less on social records, which tend to have a distinct layout, structure, and vocabulary. Such information is usually collected by expert demographers that devote a lot of time to manually transcribe them. This paper presents a new database, compiled from a marriage license books collection, to support research in automatic handwriting recognition for historical documents containing social records. Marriage license books are documents that were used for centuries by ecclesiastical institutions to register marriage licenses. Books from this collection are handwritten and span nearly half a millennium until the beginning of the 20th century. In addition, a study is presented about the capability of state-of-the-art handwritten text recognition systems, when applied to the presented database. Baseline results are reported for reference in future studies. © 2012 Elsevier Ltd. All rights reserved.Work supported by the EC (FEDER/FSE) and the Spanish MEC/MICINN under the MIPRCV ‘‘Consolider Ingenio 2010’’ program (CSD2007-00018), MITTRAL (TIN2009-14633-C03-01) and KEDIHC ((TIN2009-14633-C03-03) projects. This work has been partially supported by the European Research Council Advanced Grant (ERC-2010-AdG-20100407: 269796-5CofM) and the European seventh framework project (FP7-PEOPLE-2008-IAPP: 230653-ADAO). Also supported by the Generalitat Valenciana under grant Prometeo/2009/014 and FPU AP2007-02867, and by the Universitat Politecnica de Val encia (PAID-05-11). We would also like to thank the Center for Demographic Studies (UAB) and the Cathedral of Barcelona.Romero Gómez, V.; Fornés, A.; Serrano Martínez-Santos, N.; Sánchez Peiró, JA.; Toselli ., AH.; Frinken, V.; Vidal, E.... (2013). The ESPOSALLES database: An ancient marriage license corpus for off-line handwriting recognition. Pattern Recognition. 46(6):1658-1669. https://doi.org/10.1016/j.patcog.2012.11.024S1658166946

    Word graphs size impact on the performance of handwriting document applications

    Full text link
    [EN] Two document processing applications are con- sidered: computer-assisted transcription of text images (CATTI) and Keyword Spotting (KWS), for transcribing and indexing handwritten documents, respectively. Instead of working directly on the handwriting images, both of them employ meta-data structures called word graphs (WG), which are obtained using segmentation-free hand- written text recognition technology based on N-gram lan- guage models and hidden Markov models. A WG contains most of the relevant information of the original text (line) image required by CATTI and KWS but, if it is too large, the computational cost of generating and using it can become unafordable. Conversely, if it is too small, relevant information may be lost, leading to a reduction of CATTI or KWS performance. We study the trade-off between WG size and performance in terms of effectiveness and effi- ciency of CATTI and KWS. Results show that small, computationally cheap WGs can be used without loosing the excellent CATTI and KWS performance achieved with huge WGs.Work partially supported by the Generalitat Valenciana under the Prometeo/2009/014 Project Grant ALMAMATER, by the Spanish MECD as part of the Valorization and I+D+I Resources program of VLC/CAMPUS in the International Excellence Campus program, and through the EU projects: HIMANIS (JPICH programme, Spanish Grant Ref. PCIN-2015-068) and READ (Horizon-2020 programme, Grant Ref. 674943).Toselli ., AH.; Romero Gómez, V.; Vidal, E. (2017). Word graphs size impact on the performance of handwriting document applications. Neural Computing and Applications. 28(9):2477-2487. https://doi.org/10.1007/s00521-016-2336-2S24772487289Amengual JC, Vidal E (1998) Efficient error-correcting Viterbi parsing. IEEE Trans Pattern Anal Mach Intell 20(10):1109–1116Bazzi I, Schwartz R, Makhoul J (1999) An omnifont open-vocabulary OCR system for English and Arabic. IEEE Trans Pattern Anal Mach Intell 21(6):495–504Erman L, Lesser V (1990) The HEARSAY-II speech understanding system: a tutorial. Readings in Speech Reasoning, pp 235–245Evermann G (1999) Minimum word error rate decoding. Ph.D. thesis, Churchill College, University of CambridgeFischer A, Wuthrich M, Liwicki M, Frinken V, Bunke H, Viehhauser G, Stolz M (2009) Automatic transcription of handwritten medieval documents. In: 15th international conference on virtual systems and multimedia, 2009. VSMM ’09, pp 137–142Frinken V, Fischer A, Manmatha R, Bunke H (2012) A novel word spotting method based on recurrent neural networks. IEEE Trans Pattern Anal Mach Intell 34(2):211–224Furcy D, Koenig S (2005) Limited discrepancy beam search. In: Proceedings of the 19th international joint conference on artificial intelligence, IJCAI’05, pp 125–131Granell E, Martínez-Hinarejos CD (2015) Multimodal output combination for transcribing historical handwritten documents. In: 16th international conference on computer analysis of images and patterns, CAIP 2015, chap, pp 246–260. Springer International PublishingHakkani-Tr D, Bchet F, Riccardi G, Tur G (2006) Beyond ASR 1-best: using word confusion networks in spoken language understanding. Comput Speech Lang 20(4):495–514Jelinek F (1998) Statistical methods for speech recognition. MIT Press, CambridgeJurafsky D, Martin JH (2009) Speech and language processing: an introduction to natural language processing, speech recognition, and computational linguistics, 2nd edn. Prentice-Hall, Englewood CliffsKneser R, Ney H (1995) Improved backing-off for N-gram language modeling. In: International conference on acoustics, speech and signal processing (ICASSP ’95), vol 1, pp 181–184. IEEE Computer SocietyLiu P, Soong FK (2006) Word graph based speech recognition error correction by handwriting input. In: Proceedings of the 8th international conference on multimodal interfaces, ICMI ’06, pp 339–346. ACMLowerre BT (1976) The harpy speech recognition system. Ph.D. thesis, Pittsburgh, PALuján-Mares M, Tamarit V, Alabau V, Martínez-Hinarejos CD, Pastor M, Sanchis A, Toselli A (2008) iATROS: a speech and handwritting recognition system. In: V Jornadas en Tecnologías del Habla (VJTH’2008), pp 75–78Mangu L, Brill E, Stolcke A (2000) Finding consensus in speech recognition: word error minimization and other applications of confusion networks. Comput Speech Lang 14(4):373–400Manning CD, Raghavan P, Schutze H (2008) Introduction to information retrieval. Cambridge University Press, New YorkMohri M, Pereira F, Riley M (2002) Weighted finite-state transducers in speech recognition. Comput Speech Lang 16(1):69–88Odell JJ, Valtchev V, Woodland PC, Young SJ (1994) A one pass decoder design for large vocabulary recognition. In: Proceedings of the workshop on human language technology, HLT ’94, pp 405–410. Association for Computational LinguisticsOerder M, Ney H (1993) Word graphs: an efficient interface between continuous-speech recognition and language understanding. IEEE Int Conf Acoust Speech Signal Process 2:119–122Olivie J, Christianson C, McCarry J (eds) (2011) Handbook of natural language processing and machine translation. Springer, BerlinOrtmanns S, Ney H, Aubert X (1997) A word graph algorithm for large vocabulary continuous speech recognition. Comput Speech Lang 11(1):43–72Padmanabhan M, Saon G, Zweig G (2000) Lattice-based unsupervised MLLR for speaker adaptation. In: ASR2000-automatic speech recognition: challenges for the New Millenium ISCA Tutorial and Research Workshop (ITRW)Pesch H, Hamdani M, Forster J, Ney H (2012) Analysis of preprocessing techniques for latin handwriting recognition. In: International conference on frontiers in handwriting recognition, ICFHR’12, pp 280–284Povey D, Ghoshal A, Boulianne G, Burget L, Glembek O, Goel N, Hannemann M, Motlicek P, Qian Y, Schwarz P, Silovsky J, Stemmer G, Vesely K (2011) The Kaldi speech recognition toolkit. In: IEEE 2011 workshop on automatic speech recognition and understanding. IEEE Signal Processing SocietyPovey D, Hannemann M, Boulianne G, Burget L, Ghoshal A, Janda M, Karafiat M, Kombrink S, Motlcek P, Qian Y, Riedhammer K, Vesely K, Vu NT (2012) Generating Exact Lattices in the WFST Framework. In: IEEE international conference on acoustics, speech, and signal processing (ICASSP)Rabiner L (1989) A tutorial of hidden Markov models and selected application in speech recognition. Proc IEEE 77:257–286Robertson S (2008) A new interpretation of average precision. In: Proceedings of the international ACM SIGIR conference on research and development in information retrieval (SIGIR ’08), pp 689–690. ACMRomero V, Toselli AH, Rodríguez L, Vidal E (2007) Computer assisted transcription for ancient text images. Proc Int Conf Image Anal Recogn LNCS 4633:1182–1193Romero V, Toselli AH, Vidal E (2012) Multimodal interactive handwritten text transcription. Series in machine perception and artificial intelligence (MPAI). World Scientific Publishing, SingaporeRybach D, Gollan C, Heigold G, Hoffmeister B, Lööf J, Schlüter R, Ney H (2009) The RWTH aachen university open source speech recognition system. In: Interspeech, pp 2111–2114Sánchez J, Mühlberger G, Gatos B, Schofield P, Depuydt K, Davis R, Vidal E, de Does J (2013) tranScriptorium: an European project on handwritten text recognition. In: DocEng, pp 227–228Saon G, Povey D, Zweig G (2005) Anatomy of an extremely fast LVCSR decoder. In: INTERSPEECH, pp 549–552Strom N (1995) Generation and minimization of word graphs in continuous speech recognition. In: Proceedings of IEEE workshop on ASR’95, pp 125–126. Snowbird, UtahTanha J, de Does J, Depuydt K (2015) Combining higher-order N-grams and intelligent sample selection to improve language modeling for Handwritten Text Recognition. In: ESANN 2015 proceedings, European symposium on artificial neural networks, computational intelligence and machine learning, pp 361–366Toselli A, Romero V, i Gadea MP, Vidal E (2010) Multimodal interactive transcription of text images. Pattern Recogn 43(5):1814–1825Toselli A, Romero V, Vidal E (2015) Word-graph based applications for handwriting documents: impact of word-graph size on their performances. In: Paredes R, Cardoso JS, Pardo XM (eds) Pattern recognition and image analysis. Lecture Notes in Computer Science, vol 9117, pp 253–261. Springer International PublishingToselli AH, Juan A, Keysers D, Gonzlez J, Salvador I, Ney H, Vidal E, Casacuberta F (2004) Integrated handwriting recognition and interpretation using finite-state models. Int J Pattern Recogn Artif Intell 18(4):519–539Toselli AH, Vidal E (2013) Fast HMM-Filler approach for key word spotting in handwritten documents. In: Proceedings of the 12th international conference on document analysis and recognition (ICDAR’13). IEEE Computer SocietyToselli AH, Vidal E, Romero V, Frinken V (2013) Word-graph based keyword spotting and indexing of handwritten document images. Technical report, Universitat Politècnica de ValènciaUeffing N, Ney H (2007) Word-level confidence estimation for machine translation. Comput Linguist 33(1):9–40. doi: 10.1162/coli.2007.33.1.9Vinciarelli A, Bengio S, Bunke H (2004) Off-line recognition of unconstrained handwritten texts using HMMs and statistical language models. IEEE Trans Pattern Anal Mach Intell 26(6):709–720Weng F, Stolcke A, Sankar A (1998) Efficient lattice representation and generation. In: Proceedings of ICSLP, pp 2531–2534Wessel F, Schluter R, Macherey K, Ney H (2001) Confidence measures for large vocabulary continuous speech recognition. IEEE Trans Speech Audio Process 9(3):288–298Wolf J, Woods W (1977) The HWIM speech understanding system. In: IEEE international conference on acoustics, speech, and signal processing, ICASSP ’77, vol 2, pp 784–787Woodland P, Leggetter C, Odell J, Valtchev V, Young S (1995) The 1994 HTK large vocabulary speech recognition system. In: International conference on acoustics, speech, and signal processing (ICASSP ’95), vol 1, pp 73 –76Young S, Odell J, Ollason D, Valtchev V, Woodland P (1997) The HTK book: hidden Markov models toolkit V2.1. Cambridge Research Laboratory Ltd, CambridgeYoung S, Russell N, Thornton J (1989) Token passing: a simple conceptual model for connected speech recognition systems. Technical reportZhu M (2004) Recall, precision and average precision. Working Paper 2004–09 Department of Statistics and Actuarial Science, University of WaterlooZimmermann M, Bunke H (2004) Optimizing the integration of a statistical language model in hmm based offline handwritten text recognition. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004, vol 2, pp 541–54

    ICFHR2016 Competition on Handwritten Text Recognition on the READ Dataset

    Full text link
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] This paper describes the Handwritten Text Recognition (HTR) competition on the READ dataset that has been held in the context of the International Conference on Frontiers in Handwriting Recognition 2016. This competition aims to bring together researchers working on off-line HTR and provide them a suitable benchmark to compare their techniques on the task of transcribing typical historical handwritten documents. Two tracks with different conditions on the use of training data were proposed. Ten research groups registered in the competition but finally five submitted results. The handwritten images for this competition were drawn from the German document Ratsprotokolle collection composed of minutes of the council meetings held from 1470 to 1805, used in the READ project. The selected dataset is written by several hands and entails significant variabilities and difficulties. The five participants achieved good results with transcriptions word error rates ranging from 21% to 47% and character error rates rating from 5% to 19%.This work has been partially supported through the European Union's H2020 grant READ (Recognition and Enrichment of Archival Documents) (Ref: 674943), and the MINECO/FEDER UE project TIN2015-70924-C2-1-R.Sánchez Peiró, JA.; Romero Gómez, V.; Toselli, AH.; Vidal, E. (2016). ICFHR2016 Competition on Handwritten Text Recognition on the READ Dataset. IEEE. https://doi.org/10.1109/ICFHR.2016.0120
    • …
    corecore