1,019 research outputs found

    Linear Complexity Hexahedral Mesh Generation

    Full text link
    We show that any polyhedron forming a topological ball with an even number of quadrilateral sides can be partitioned into O(n) topological cubes, meeting face to face. The result generalizes to non-simply-connected polyhedra satisfying an additional bipartiteness condition. The same techniques can also be used to reduce the geometric version of the hexahedral mesh generation problem to a finite case analysis amenable to machine solution.Comment: 12 pages, 17 figures. A preliminary version of this paper appeared at the 12th ACM Symp. on Computational Geometry. This is the final version, and will appear in a special issue of Computational Geometry: Theory and Applications for papers from SCG '9

    h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems

    Full text link
    In this work we exploit agglomeration based hh-multigrid preconditioners to speed-up the iterative solution of discontinuous Galerkin discretizations of the Stokes and Navier-Stokes equations. As a distinctive feature hh-coarsened mesh sequences are generated by recursive agglomeration of a fine grid, admitting arbitrarily unstructured grids of complex domains, and agglomeration based discontinuous Galerkin discretizations are employed to deal with agglomerated elements of coarse levels. Both the expense of building coarse grid operators and the performance of the resulting multigrid iteration are investigated. For the sake of efficiency coarse grid operators are inherited through element-by-element L2L^2 projections, avoiding the cost of numerical integration over agglomerated elements. Specific care is devoted to the projection of viscous terms discretized by means of the BR2 dG method. We demonstrate that enforcing the correct amount of stabilization on coarse grids levels is mandatory for achieving uniform convergence with respect to the number of levels. The numerical solution of steady and unsteady, linear and non-linear problems is considered tackling challenging 2D test cases and 3D real life computations on parallel architectures. Significant execution time gains are documented.Comment: 78 pages, 7 figure

    A case study in hexahedral mesh generation: Simulation of the human mandible

    Get PDF
    We provide a case study for the generation of pure hexahedral meshes for the numerical simulation of physiological stress scenarios of the human mandible. Due to its complex and very detailed free-form geometry, the mandible model is very demanding. This test case is used as a running example to demonstrate the applicability of a combinatorial approach for the generation of hexahedral meshes by means of successive dual cycle eliminations, which has been proposed by the second author in previous work. We report on the progress and recent advances of the cycle elimination scheme. The given input data, a surface triangulation obtained from computed tomography data, requires a substantial mesh reduction and a suitable conversion into a quadrilateral surface mesh as a first step, for which we use mesh clustering and b-matching techniques. Several strategies for improved cycle elimination orders are proposed. They lead to a significant reduction in the mesh size and a better structural quality. Based on the resulting combinatorial meshes, gradient-based optimized smoothing with the condition number of the Jacobian matrix as objective together with mesh untangling techniques yielded embeddings of a satisfactory quality. To test our hexahedral meshes for the mandible model within an FEM simulation we used the scenario of a bite on a ‘hard nut.’ Our simulation results are in good agreement with observations from biomechanical experiments

    H-Morph: an indirect approach to advancing front hex meshing

    Get PDF

    A geometric mesh smoothing algorithm related to damped oscillations

    Full text link
    We introduce a smoothing algorithm for triangle, quadrilateral, tetrahedral and hexahedral meshes whose centerpiece is a simple geometric triangle transformation. The first part focuses on the mathematical properties of the element transformation. In particular, the transformation gives rise directly to a continuous model given by a system of coupled damped oscillations. Derived from this physical model, adaptive parameters are introduced and their benefits presented. The second part discusses the mesh smoothing algorithm based on the element transformation and its numerical performance on example meshes.Comment: 35 pages, 16 figure

    All-Hex Meshing of Multiple-Region Domains without Cleanup

    Get PDF
    AbstractIn this paper, we present a new algorithm for all-hex meshing of domains with multiple regions without post-processing cleanup. Our method starts with a strongly balanced octree. In contrast to snapping the grid points onto the geometric boundaries, we move points a slight distance away from the common boundaries. Then we intersect the moved grid with the geometry. This allows us to avoid creating any flat angles, and we are able to handle two-sided regions and more complex topologies than prior methods. The algorithm is robust and cleanup-free; without the use of any pillowing, swapping, or smoothing. Thus, our simple algorithm is also more predictable than prior art

    On curving high-order hexahedral meshes

    Get PDF
    We present a new definition of distortion and quality measures for high-order hexahedral (quadrilateral) elements. This definition leads to two direct applications. First, it can be used to check the validity and quality of a high-order hexahedral (quadrilateral) mesh. Second, it allows the generation of high-order curved meshes composed of valid and high-quality hexahedral (quadrilateral) elements. We describe a method to simultaneously smooth and untangle high-order hexahedral (quadrilateral) meshes by minimizing the proposed mesh distortion. Finally, we analyze the behavior of the proposed distortion measure and we present several results to illustrate the benefits of the mesh generation framework.Peer ReviewedPostprint (author's final draft

    A new least-squares approximation of affine mappings for sweep algorithms

    Get PDF
    This paper presents a new algorithm to generate hexahedral meshes in extrusion geometries. Several algorithms have been devised to generate hexahedral meshes by projecting the cap surfaces along a sweep path. In all of these algorithms the crucial step is the placement of the inner layer of nodes. That is, the projection of the source surface mesh along the sweep path. From the computational point of view, sweep methods based on a least-squares approximation of an affine mapping are the fastest alternative to compute these projections. Several functionals have been introduced to perform the least-squares approximation. However, for very simple and typical geometrical configurations they may generate low-quality projected meshes. For instance, they may induce skewness and flattening effects on the projected discretizations. In addition, for these configurations the minimization of these functionals may lead to a set of normal equations with singular system matrix. In this work we analyze previously defined functionals. Based on this analysis we propose a new functional and show that its minimization overcomes these drawbacks. Finally, we present several examples to assess the properties of the proposed functional

    Paving the path towards automatic hexahedral mesh generation

    Get PDF
    Esta tesis versa sobre el desarrollo de las tecnologías para la generación de mallas de hexaedros. El proceso de generar una malla de hexaedros no es automático y su generación requiere varias horas te trabajo de un ingeniero especializado. Por lo tanto, es importante desarrollar herramientas que faciliten dicho proceso de generación. Con este fin, se presenta y desarrolla un método de proyección de mallas, una técnica de sweeping o barrido, un algoritmo para la obtención de mallas por bloques, y un entorno de generación de mallas. Las implementaciones más competitivas del método de sweeping utilizan técnicas de proyección de mallas basadas en métodos afines. Los métodos afines más habituales presentan varios problemas relacionados con la obtención de sistemas de ecuaciones normales de rango deficiente. Para solucionar dichos problemas se presenta y analiza un nuevo método afín que depende de dos parámetros vectoriales. Además, se detalla un procedimiento automático para la selección de dichos vectores. El método de proyección resultante preserva la forma de las mallas proyectadas. Esta proyección es incorporada también en una nueva herramienta de sweeping. Dicha herramienta genera capas de nodos internos que respetan la curvatura de las superficies inicial y final. La herramienta de sweeping es capaz de mallar geometrías de extrusión definidas por trayectorias curvas, secciones no constantes a lo largo del eje de sweeping, y superficies inicial y final con diferente forma y curvatura.En las últimas décadas se han propuesto varios ataques para la generación automática de mallas de hexahedros. Sin embargo, todavía no existe un algoritmo rápido y robusto que genere automáticamente mallas de hexaedros de alta calidad. Se propone un nuevo ataque para la generación de mallas por bloques mediante la representación de la geometría y la topología del dual de una malla de hexaedros. En dicho ataque, primero se genera una malla grosera de tetraedros. Después, varió polígonos planos se añaden al interior de los elementos de la malla grosera inicial. Dichos polígonos se denotan como contribuciones duales locales y representan una versión discreta del dual de una malla de hexaedros. En el último paso, la malla por bloques se obtiene como el dual de la representación del dual generada. El algoritmo de generación de mallas por bloques es aplicado a geometrías que presentan diferentes características geométricas como son superficies planas, superficies curvas, configuraciones delgadas, agujeros, y vértices con valencia mayor que tres.Las mallas se generan habitualmente con la ayuda de entornos interactivos que integran una interfaz CAD y varios algoritmos de generación de mallas. Se presenta un nuevo entorno de generación de mallas especializado en la generación de cuadriláteros y hexaedros. Este entorno proporciona la tecnología necesaria para implementar les técnicas de generación de mallas de hexaedros presentadas en esta tesis.This thesis deals with the development of hexahedral mesh generation technology. The process of generating hexahedral meshes is not fully automatic and it is a time consuming task. Therefore, it is important to develop tools that facilitate the generation of hexahedral meshes. To this end, a mesh projection method, a sweeping technique, a block-meshing algorithm, and an interactive mesh generation environment are presented and developed. Competitive implementations of the sweeping method use mesh projection techniques based on affine methods. Standard affine methods have several drawbacks related to the statement of rank deficient sets of normal equations. To overcome these drawbacks a new affine method that depends on two vector parameters is presented and analyzed. Moreover, an automatic procedure that selects these two vector parameters is detailed. The resulting projection procedure preserves the shape of projected meshes. Then, this procedure is incorporated in a new sweeping tool. This tool generates inner layers of nodes that preserve the curvature of the cap surfaces. The sweeping tool is able to mesh extrusion geometries defined by non-linear sweeping trajectories, non-constant cross sections along the sweep axis, non-parallel cap surfaces, and cap surfaces with different shape and curvature. In the last decades, several general-purpose approaches to generate automatically hexahedral meshes have been proposed. However, a fast and robust algorithm that automatically generates high-quality hexahedral meshes is not available. A novel approach for block meshing by representing the geometry and the topology of a hexahedral mesh is presented. The block-meshing algorithm first generates an initial coarse mesh of tetrahedral elements. Second, several planar polygons are added inside the elements of the initial coarse mesh. These polygons are referred as local dual contributions and represent a discrete version of the dual of a hexahedral mesh. Finally, the dual representation is dualized to obtain the final block mesh. The block-meshing algorithm is applied to mesh geometries that present different geometrical characteristics such as planar surfaces, curved surfaces, thin configurations, holes, and vertices with valence greater than three.Meshes are usually generated with the help of interactive environments that integrate a CAD interface and several meshing algorithms. An overview of a new mesh generation environment focused in quadrilateral and hexahedral mesh generation is presented. This environment provides the technology required to implement the hexahedral meshing techniques presented in this thesis.Postprint (published version
    • …
    corecore