2,166 research outputs found

    Some issues in the sliding mode control of rigid robotic manipulators

    Get PDF
    This thesis investigates the problem of robust adaptive sliding mode control for nonlinear rigid robotic manipulators. A number of robustness and convergence results are presented for sliding mode control of robotic manipulators with bounded unknown disturbances, nonlinearities, dynamical couplings and parameter uncertainties. The highlights of the research work are summarized below : • A robust adaptive tracking control for rigid robotic manipulators is proposed. In this scheme, the parameters of the upper bound of system uncertainty are adaptively estimated. The controller estimates are then used as controller parameters to eliminate the effects of system uncertainty and guarantee asymptotic error convergence. • A decentralised adaptive sliding mode control scheme for rigid robotic manipulators is proposed. The known dynamics of the partially known robotic manipulator are separated out to perform linearization. A local feedback controller is then designed to stabilize each subsystem and an adaptive sliding mode compensator is used to handle the effects of uncertain system dynamics. The developed scheme guarantees that the effects of system dynamics are eliminated and that asymptotic error convergence is obtained with respect to the overall robotic control system. • A model reference adaptive control using the terminal sliding mode technique is proposed. A multivariable terminal sliding mode is defined for a model following control system for rigid robotic manipulators. A terminal sliding mode controller is then designed based on only a few uncertain system matrix bounds. The result is a simple and robust controller design that guarantees convergence of the output tracking error in a finite time on the terminal sliding mode

    Robust decentralised variable structure control for rigid robotic manipulators

    Get PDF
    In this thesis, the problem of robust variable structure control for non-linear rigid robotic manipulators is investigated. Robustness and convergence results are presented for variable structure control systems of robotic manipulators with bounded unknown disturbances, nonlinearities, dynamical couplings and parameter uncertainties. The major outcomes of the work described in this thesis are summarised as given below. The basic variable structure theory is surveyed, and some basic ideas such as sliding mode designs, robustness analysis and control1er design methods for linear or non-linear systems are reviewed. Three recent variable structure control schemes for robotic manipulators are discussed and compared to highlight the research developments in this area. A decentralised variable structure model reference adaptive control scheme is proposed for a class of large scale systems. It is shown that, unlike previous decentralised variable structure control schemes, the local variable structure controller design in this scheme requires only three bounds of the subsystem matrices and dynamical interactions instead of the upper and the lower bounds of all unknown subsystem parameters. Using this scheme, not only asymptotic convergence of the output tracking error can be guaranteed, but also the controller design is greatly simplified. In order to eliminate chattering caused by the variable structure technique, local boundary layer controllers are presented. Furthermore, the scheme is applied to the tracking control of robotic manipulators with the result that strong robustness and asymptotic convergence of the output tracking error are obtained

    Control strategies for robotic manipulators

    Get PDF
    This survey is aimed at presenting the major robust control strategies for rigid robot manipulators. The techniques discussed are feedback linearization/Computed torque control, Variable structure compensator, Passivity based approach and Disturbance observer based control. The first one is based on complete dynamic model of a robot. It results in simple linear control which offers guaranteed stability. Variable structure compensator uses a switching/relay action to overcome dynamic uncertainties and disturbances. Passivity based controller make use of passive structure of a robot. If passivity of a feedback system is proved, nonlinearities and uncertainties will not affect the stability. Disturbance observer based controllers estimate disturbances, which can be cancelled out to achieve a nominal model, for which a simple controller can then be designed. This paper, after explaining each control strategy in detail, finally compares these strategies for their pros and cons. Possible solutions to cope with the drawbacks have also been presented in tabular form. © 2012 IEEE

    Robotic Manipulator Control in the Presence of Uncertainty

    Get PDF
    openThis research focuses on the problem of manipulator control in the presence of uncertainty and aims to compare different approaches for handling uncertainty while developing robust and adaptive methods that can control the robot without explicit knowledge of uncertainty bounds. Uncertainty is a pervasive challenge in robotics, arising from various sources such as sensor noise, modeling errors, and external disturbances. Effectively addressing uncertainty is crucial for achieving accurate and reliable manipulator control. The research will explore and compare existing methods for uncertainty handling such as robust feedback linearization , sliding mode control and robust adaptive control. These methods provide mechanisms to model and compensate for uncertainty in the control system. Additionally, modified robust and adaptive control methods will be developed that can dynamically adjust control laws based on the observed states, without requiring explicit knowledge of uncertainty bounds. To evaluate the performance of the different approaches, comprehensive experiments will be conducted on a manipulator platform. Various manipulation tasks will be performed under different levels of uncertainty, and the performance of each control approach will be assessed in terms of accuracy, stability, and adaptability. Comparative analysis will be conducted to highlight the strengths and weaknesses of each method and identify the most effective approach for handling uncertainty in manipulator control. The outcomes of this research will contribute to the advancement of manipulator control by providing insights into the effectiveness of different approaches for uncertainty handling. The development of new robust and adaptive control methods will enable manipulators to operate in uncertain environments without requiring explicit knowledge of uncertainty bounds. Ultimately, this research will facilitate the deployment of more reliable and adaptive robotic systems capable of handling uncertainty and improving their performance in various real-world applications.This research focuses on the problem of manipulator control in the presence of uncertainty and aims to compare different approaches for handling uncertainty while developing robust and adaptive methods that can control the robot without explicit knowledge of uncertainty bounds. Uncertainty is a pervasive challenge in robotics, arising from various sources such as sensor noise, modeling errors, and external disturbances. Effectively addressing uncertainty is crucial for achieving accurate and reliable manipulator control. The research will explore and compare existing methods for uncertainty handling such as robust feedback linearization , sliding mode control and robust adaptive control. These methods provide mechanisms to model and compensate for uncertainty in the control system. Additionally, modified robust and adaptive control methods will be developed that can dynamically adjust control laws based on the observed states, without requiring explicit knowledge of uncertainty bounds. To evaluate the performance of the different approaches, comprehensive experiments will be conducted on a manipulator platform. Various manipulation tasks will be performed under different levels of uncertainty, and the performance of each control approach will be assessed in terms of accuracy, stability, and adaptability. Comparative analysis will be conducted to highlight the strengths and weaknesses of each method and identify the most effective approach for handling uncertainty in manipulator control. The outcomes of this research will contribute to the advancement of manipulator control by providing insights into the effectiveness of different approaches for uncertainty handling. The development of new robust and adaptive control methods will enable manipulators to operate in uncertain environments without requiring explicit knowledge of uncertainty bounds. Ultimately, this research will facilitate the deployment of more reliable and adaptive robotic systems capable of handling uncertainty and improving their performance in various real-world applications

    Sampled-Data Sliding Mode Control Design of Single- Link Flexible Joint Robotic Manipulator

    Get PDF
    International audienceIn this paper, we have designed a sampled data control law for the single-link flexible joint robotic manipulator using two different approaches. First, we have designed the sampled-data sliding mode control (SMC) based on the continuous time system. In the second approach, we have obtained the approximate discrete model of the system and then designed discrete sliding mode control based on this approximate system. Simulation results have been obtained and a performance comparison has been presented for both techniques

    Design, Control and Motion Planning for a Novel Modular Extendable Robotic Manipulator

    Get PDF
    This dissertation discusses an implementation of a design, control and motion planning for a novel extendable modular redundant robotic manipulator in space constraints, which robots may encounter for completing required tasks in small and constrained environment. The design intent is to facilitate the movement of the proposed robotic manipulator in constrained environments, such as rubble piles. The proposed robotic manipulator with multi Degree of Freedom (m-DOF) links is capable of elongating by 25% of its nominal length. In this context, a design optimization problem with multiple objectives is also considered. In order to identify the benefits of the proposed design strategy, the reachable workspace of the proposed manipulator is compared with that of the Jet Propulsion Laboratory (JPL) serpentine robot. The simulation results show that the proposed manipulator has a relatively efficient reachable workspace, needed in constrained environments. The singularity and manipulability of the designed manipulator are investigated. In this study, we investigate the number of links that produces the optimal design architecture of the proposed robotic manipulator. The total number of links decided by a design optimization can be useful distinction in practice. Also, we have considered a novel robust bio-inspired Sliding Mode Control (SMC) to achieve favorable tracking performance for a class of robotic manipulators with uncertainties. To eliminate the chattering problem of the conventional sliding mode control, we apply the Brain Emotional Learning Based Intelligent Control (BELBIC) to adaptively adjust the control input law in sliding mode control. The on-line computed parameters achieve favorable system robustness in process of parameter uncertainties and external disturbances. The simulation results demonstrate that our control strategy is effective in tracking high speed trajectories with less chattering, as compared to the conventional sliding mode control. The learning process of BLS is shown to enhance the performance of a new robust controller. Lastly, we consider the potential field methodology to generate a desired trajectory in small and constrained environments. Also, Obstacle Collision Avoidance (OCA) is applied to obtain an inverse kinematic solution of a redundant robotic manipulator

    A Comparative Study of LQR and Integral Sliding Mode Control Strategies for Position Tracking Control of Robotic Manipulators

    Get PDF
    This paper provides a systematic comparative study of position tracking control of nonlinear robotic manipulators. The main contribution of this study is a comprehensive numerical simulation assessing position tracking performances and energy consumption of integral sliding mode control (ISMC), a linear-quadratic regulator with integral action (LQRT), and optimal integral sliding mode control (OISMC) under three conditions; namely, Case I) without the coupling effect, Case II) with the coupling effect on Link 1 only, and Case III) with the coupling effect on Link 2 only. The viability of the concept is evaluated based on three performance criteria, i.e., the step-response characteristics, position tracking error, and energy consumption of the aforementioned controllers. Based upon the simulation study, it has been found that OISMC offers performances almost similar to ISMC with more than 90% improvement of tracking performance under several cases compared to LQRT; however, energy consumption is successfully reduced by 3.6% in comparison to ISMC. Energy consumption of OISMC can be further reduced by applying optimization algorithms in tuning the weighting matrices. This paper can be considered significant as a robotic system with high tracking accuracy and low energy consumption is highly demanded to be implemented in smart factories, especially for autonomous systems
    corecore