2,019 research outputs found

    Morphing Switched-Capacitor Converters with Variable Conversion Ratio

    Get PDF
    High-voltage-gain and wide-input-range dc-dc converters are widely used in various electronics and industrial products such as portable devices, telecommunication, automotive, and aerospace systems. The two-stage converter is a widely adopted architecture for such applications, and it is proven to have a higher efficiency as compared with that of the single-stage converter. This paper presents a modular-cell-based morphing switched-capacitor (SC) converter for application as a front-end converter of the two-stage converter. The conversion ratio of this converter is flexible and variable and can be freely extended by increasing more SC modules. The varying conversion ratio is achieved through the morphing of the converter's structure corresponding to the amplitude of the input voltage. This converter is light and compact, and is highly efficient over a very wide range of input voltage and load conditions. Experimental work on a 25-W, 6-30-V input, 3.5-8.5-V output prototype, is performed. For a single SC module, the efficiency over the entire input voltage range is higher than 98%. Applied into the two-stage converter, the overall efficiency achievable over the entire operating range is 80% including the driver's loss

    Impedance Source Converters for Renewable Energy Systems

    Get PDF

    High step up DC-DC converter topology for PV systems and electric vehicles

    Get PDF
    This thesis presents new high step-up DC-DC converters for photovoltaic and electric vehicle applications. An asymmetric flyback-forward DC-DC converter is proposed for the PV system controlled by the MPPT algorithm. The second converter is a modular switched-capacitor DC-DC converter, it has the capability to operate with transistor and capacitor open-circuit faults in every module. The results from simulations and tests of the asymmetric DC-DC converters have suggested that the proposed converter has a 5% to 10% voltage gain ratio increased to the symmetric structures among 100W – 300W power (such as [3]) range while maintaining efficiency of 89%-93% when input voltage is in the range of 25 – 30 V. they also indicated that the softswitching technique has been achieved, which significantly reduce the power loss by 1.7%, which exceeds the same topology of the proposed converter without the softswitching technique. Moreover, the converters can maintain rated outputs under main transistor open circuit fault situation or capacitor open circuit faults. The simulation and test results of the proposed modularized switched-capacitor DC-DC converters indicate that the proposed converter has the potential of extension, it can be embedded with infinite module in simulation results, however, during experiment. The sign open circuit fault to the transistors and capacitors would have low impact to the proposed converters, only the current ripple on the input source would increase around 25% for 4-module switched-capacitor DC-DC converters. The developed converters can be applied to many applications where DC-DC voltage conversion is alighted. In addition to PVs and EVs. Since they can ride through some electrical faults in the devices, the developed converter will have economic implications to improve the system efficiency and reliability

    Hybrid and modular multilevel converter designs for isolated HVDC–DC converters

    Get PDF
    Efficient medium and high-voltage dc-dc conversion is critical for future dc grids. This paper proposes a hybrid multilevel dc-ac converter structure that is used as the kernel of dc-dc conversion systems. Operation of the proposed dc-ac converter is suited to trapezoidal ac-voltage waveforms. Quantitative and qualitative analyses show that said trapezoidal operation reduces converter footprint, active and passive components' size, and on-state losses relative to conventional modular multilevel converters. The proposed converter is scalable to high voltages with controllable ac-voltage slope; implying tolerable dv/dt stresses on the converter transformer. Structural variations of the proposed converter with enhanced modularity and improved efficiency will be presented and discussed with regards to application in front-to-front isolated dc-dc conversion stages, and in light of said trapezoidal operation. Numerical results provide deeper insight of the presented converter designs with emphasis on system design aspects. Results obtained from a proof-of-concept 1-kW experimental test rig confirm the validity of simulation results, theoretical analyses, and simplified design equations presented in this paper. - 2013 IEEE.Scopu

    Survey of DC-DC Non-Isolated Topologies for Unidirectional Power Flow in Fuel Cell Vehicles

    Get PDF
    The automobile companies are focusing on recent technologies such as growing Hydrogen (H2) and Fuel Cell (FC) Vehicular Power Train (VPT) to improve the Tank-To-Wheel (TTW) efficiency. Benefits, the lower cost, `Eco\u27 friendly, zero-emission and high-power capacity, etc. In the power train of fuel cell vehicles, the DC-DC power converters play a vital role to boost the fuel cell stack voltage. Hence, satisfy the demand of the motor and transmission in the vehicles. Several DC-DC converter topologies have proposed for various vehicular applications like fuel cell, battery, and renewable energy fed hybrid vehicles etc. Most cases, the DC-DC power converters are viable and cost-effective solutions for FC-VPT with reduced size and increased efficiency. This article describes the state-of-the-art in unidirectional non-isolated DC-DC Multistage Power Converter (MPC) topologies for FC-VPT application. The paper presented the comprehensive review, comparison of different topologies and stated the suitability for different vehicular applications. This article also discusses the DC-DC MPC applications more specific to the power train of a small vehicle to large vehicles (bus, trucks etc.). Further, the advantages and disadvantages pointed out with the prominent features for converters. Finally, the classification of the DC-DC converters, its challenges, and applications for FC technology is presented in the review article as state-of-the-art in research

    An improved multistage switched inductor boost converter (improved M-SIBC) for renewable energy applications: a key to enhance conversion ratio

    Get PDF
    In this article, an improved Multistage Switched Inductor (M-SI) based power converter or Improved Multistage Switched Inductor Boost Converter (Improved M-SIBC) is proposed for renewable applications which provides a key to enhance voltage conversion ratio. In last decades, Switched Inductor (SI) and M-SI are the popular network/technique employed in DC-DC converter to achieve high voltage conversion ratio. An improved SI and M-SI network/technique is proposed to enhance the existing the voltage conversion capabilities of SI and M-SI by replacing central uncontrolled switches by polarized capacitor. The anticipated power converter configuration combines the feature of conventional boost converter and improved M-SI. The voltage conversion a capability is depends on the number of stages of M-SI and ON time of control switch. The operation modes and characteristics of proposed converter with steady state mathematical analysis for N-stages are discussed in detail. Moreover, the proposed converter compared with existing converter in terms of voltage conversion ratio and the detail of number of components is also provided. Matrix Laboratory R2016a simulation results of 100W proposed improved M-SIBC with considering three stages are provided and the results always shows a good agreement with theoretical analysis and also validates the improved M-SI network concept

    A modular multilevel voltage-boosting Marx pulse-waveform generator for electroporation applications

    Get PDF
    In order to overcome the limitations of the existing classical and solid-state Marx pulse generators, this paper proposes a new modular multilevel voltage-boosting Marx pulse generator (BMPG). The proposed BMPG has hardware features that allow modularity, redundancy, and scalability as well as operational features that alleviate the need of series-connected switches and allows generation of a wide range of pulse waveforms. In the BMPG, a controllable, low-voltage input boost converter supplies, via directing/blocking (D/B) diodes, two arms of a series modular multilevel converter half-bridge sub-modules (HB-SMs). At start up, all the arm's SM capacitors are resonantly charged in parallel from 0 V, simultaneously via directing diodes, to a voltage in excess of the source voltage. After the first pulse delivery, the energy of the SM capacitors decreases due to the generated pulse. Then, for continuous operation without fully discharging the SM capacitors or having a large voltage droop as in the available Marx generators, the SM capacitors are continuously recharged in parallel, to the desired boosted voltage level. Because all SMs are parallelly connected, the boost converter duty ratio is controlled by a single voltage measurement at the output terminals of the boost converter. Due to the proposed SMs structure and the utilization of D/B diodes, each SM capacitor is effectively controlled individually without requiring a voltage sensor across each SM capacitor. Generation of the commonly used pulse waveforms in electroporation applications is possible, while assuring balanced capacitors, hence SM voltages. The proposed BMPG has several topological variations such as utilizing a buck-boost converter at the input stage and replacing the HB-SM with full-bridge SMs. The proposed BMPG topology is assessed by simulation and scaled-down proof-of-concept experimentation to explore its viability for electroporation applications

    Multiport DC-DC Converters for Hybrid Energy Systems

    Get PDF
    Renewable energy sources (RESs) like solar and wind have gained attention for their potential to reduce reliance on fossil fuels and mitigate climate change. However, integrating multiple RESs into a power grid is challenging due to their unpredictable nature. Power electronic converters can manage hybrid energy systems by controlling power flow between RESs, storages, and the grid. Conventional single input dc-dc converters have limitations such as low efficiency, bulky designs, and complex control systems. Multiport dc-dc converters (MPCs) have emerged as a solution for hybridizing multiple sources, storages, and load systems by providing a common interface. Existing MPCs have limitations such as high component count, limited operational range, complex control strategies and restrictions on the number of inputs to list a few. Thus, there is a need to develop new MPCs that combine the advantages of existing designs while overcoming their limitations. Isolated MPCs with unipolar or bipolar outputs are needed that can accommodate any number of inputs, offer high voltage gain, use fixed magnetic components for galvanic isolation (regardless of the number of ports), and have a simplified control strategy. Additionally, new non-isolated MPCs with unipolar or bipolar outputs are required, featuring reduced component count, simultaneous power transfer and power flow between input ports, high voltage gain, low control complexity, and modular design allowing for arbitrary increase in the number of input ports. There is also an opportunity to apply MPCs in the integration of RESs and storages to ac grids through multilevel inverters for low component count, high efficiency, low harmonics, and higher power density. Further, advances in bipolar MPCs provide the chance to balance the dc bus without requiring a complex control system.acceptedVersio

    Extended family of DC-DC Quasi-Z-Source converters

    Get PDF
    The family of DC-DC q-ZSCs is extended from two to three classes and four to six members. All the members were analyzed based on efficient duty ratio range (RDeff) and general duty ratio range (RDgen). Findings showed that similar to the traditional buck-boost converter (BBC), each of the topologies is theoretically capable of inverted buck-boost (BB) operation for the RDgen with additional advantages but differed according to class in how the gains are achieved. The new topologies have advantages of BB capability at the RDeff, continuous and operable duty ratio range with unity gain at  contrary to existing topologies where undefined or zero gain is produced. Potential applications of each class were discussed with suitable topologies for applications such as fuel cells, photovoltaic, uninterruptible power supply (UPS), hybrid energy storage and load levelling systems identified
    corecore