233 research outputs found

    An N-bit digitally variable ultra wideband pulse generator for GPR and UWB applications

    Get PDF
    This paper presents a low-cost Ultra Wideband (UWB) pulse generator that can vary the pulse duration digitally by using a Step Recovery Diode (SRD), microstrip transmission lines and PIN diodes. First, a sharp edge is generated by using a SRD circuitry. Then a pulse is formed from the sharp edge through the use of transmission lines and the PIN diodes. Based on the number of transmission lines (N), the duration of the pulse can be varied in steps. The UWB pulse generator circuits are implemented on an FR-4 substrate using microstrip line technology and UWB pulses with durations of 550 to 2400 psec are measured. N2 Ke

    Approximation of L\"owdin Orthogonalization to a Spectrally Efficient Orthogonal Overlapping PPM Design for UWB Impulse Radio

    Full text link
    In this paper we consider the design of spectrally efficient time-limited pulses for ultrawideband (UWB) systems using an overlapping pulse position modulation scheme. For this we investigate an orthogonalization method, which was developed in 1950 by Per-Olov L\"owdin. Our objective is to obtain a set of N orthogonal (L\"owdin) pulses, which remain time-limited and spectrally efficient for UWB systems, from a set of N equidistant translates of a time-limited optimal spectral designed UWB pulse. We derive an approximate L\"owdin orthogonalization (ALO) by using circulant approximations for the Gram matrix to obtain a practical filter implementation. We show that the centered ALO and L\"owdin pulses converge pointwise to the same Nyquist pulse as N tends to infinity. The set of translates of the Nyquist pulse forms an orthonormal basis or the shift-invariant space generated by the initial spectral optimal pulse. The ALO transform provides a closed-form approximation of the L\"owdin transform, which can be implemented in an analog fashion without the need of analog to digital conversions. Furthermore, we investigate the interplay between the optimization and the orthogonalization procedure by using methods from the theory of shift-invariant spaces. Finally we develop a connection between our results and wavelet and frame theory.Comment: 33 pages, 11 figures. Accepted for publication 9 Sep 201

    Universal Generator of Ultra-Wideband Pulses

    Get PDF
    An Ultra-Wideband (UWB) subnanosecond pulse generator is described in this paper. High amplitude Gaussian pulses are generated by a Step Recovery Diode (SRD) included in a novel pulse forming circuit. The pro-posed circuit solution utilizes the performance of the SRD effectively, without excessive requirements regarding the driver section of the generator. Monocycle pulses are then generated by an additional pulse forming network. A sim-ple transistor driver is also described, which transforms a TTL trigger signal to a driving pulse with the timing and amplitude parameters required by the SRD. Measurement results are presented, which show the proposed generator operating with stable output pulse parameters at arbitrary pulse repetition frequency up to 20 MHz. The generated monocycle pulses are 25 V in amplitude and approximately 500 ps in width

    Design and Implementation of a UWB Radar Sensor for Non-Destructive Application

    Full text link
    [ES] Debido a la importancia de los campos de aplicación del sensor de radar de banda ultraancha, y también a los requisitos de cada aplicación específica, existe una demanda creciente de diseño compacto, de bajo coste y alta precisión del sensor de radar de banda ultraancha. Para responder a estas exigencias, esta tesis pretende proponer un sensor de radar UWB avanzado. Este trabajo de investigación se centra en el diseño del sensor de radar de banda ultraancha (UWB) para aplicaciones no destructivas (END). Los detalles de diseño incluyen el diseño de un generador de pulsos ultracorto, de alta potencia con un timbre mínimo. El radar desarrollado fue construido con una configuración biestática. El objetivo de este trabajo es medir el rango de distancia y las propiedades eléctricas de un objetivo, por ejemplo, metales y materiales dieléctricos, como el cloruro de polivinilo (PV C). Para lograr este objetivo, se ha desarrollado un novedoso generador de pulsos de alta potencia ultra-corto (pulsador de radar). El nuevo generador de pulsos consiste en un transistor que funciona en modo de avalancha y un circuito de afilado de pulsos que utiliza un nuevo modelo de diodo de recuperación de paso (SRD). Para convertir el pulso gaussiano en un monociclo, se ha añadido una red de formación de monociclo (MFN). El generador de impulsos desarrollado produce un impulso eléctrico con una amplitud de 12 V, un tiempo de subida de 112 ps y un ancho de impulso (FWHM) de 155 ps. Con el fin de aumentar la amplitud de los pulsos, se han propuesto dos técnicas útiles en este trabajo. El primero consiste en agregar dos generadores en paralelo, en este diseño propuesto se tuvo en cuenta alguna especificación para hacer que este circuito funcione. Sin embargo, la segunda técnica adoptada en este trabajo consiste en dos etapas de generadores, ambas técnicas dan lugar a un buen rendimiento; en lugar de un solo módulo de un generador de impulsos, las técnicas propuestas en este trabajo aumentan la amplitud en torno al doble. Ambas técnicas han sido investigadas en detalle. Para transmitir y recibir los impulsos ultracortos generados, se utilizaron dos tipos diferentes de antenas UWB. En primer lugar, una antena Vivaldi con un ancho de banda de unos 5,5 GHz de 600 MHz a 6 GHz. La segunda es una antena Vivaldi con un ancho de banda de 6 GHz de 400 Mhz a 6,2 GHz. Utilizando el sensor de radar de banda ultraancha desarrollado, se realizaron mediciones de prueba. Esto incluye las propiedades eléctricas, así como la medición de la distancia a las placas de metal, madera y PVC. La incertidumbre del sensor de radar es de 14 mm (datos medidos asustados a + 14 mm para un blanco fijo). El diseño y la implementación real que conduce a lograr un excelente prototipo de rendimiento para una aplicación no destructiva.[CA] A causa de la rellevància dels camps d'aplicació del sensor de radar d'ultra banda ampla, i també l'exigència de cada aplicació específica, hi ha una demanda creixent de disseny compacte, de baix cost i alta precisió del sensor de radar d'ultra banda ampla. Amb la intenció d'atendre aquestes demandes, aquesta tesi pretén proposar un sensor avançat de radar UWB. Aquest treball de recerca tracta del disseny del sensor de radar d'ultra-banda ampla (UWB) per a aplicacions no destructives (NDT). Els detalls del disseny inclouen el disseny d'un pols de monocicle amb pols de potència d'alta potència i amb un mínim de timbre. El radar desenvolupat va ser construït en configuració bi-estàtica. L'objectiu d'aquest treball és mesurar el rang de distància i les propietats elèctriques d'un objectiu, per exemple, materials metàl·lics i dielèctrics, com el clorur de polivinil (PV C). Per assolir aquest objectiu, s'ha desenvolupat un nou ultrasò, generador de pols d'alta potència (polsador de radar). El nou generador de pols està format per un transistor que funciona en mode d'allaus i un circuit d'afilat de pols mitjançant un nou model de díode de recuperació de pas (SRD). Per a convertir el pols gaussiano en un monocicle, s'ha afegit una xarxa de formació de monocicles (MFN). El generador de polsos desenvolupat produeix un pols elèctric amb una amplitud de 12 V, un temps d'augment de 112 ps i un ample de pols (FWHM) de 155 ps. Amb l'objectiu d'augmentar l'amplitud dels polsos, s'han proposat dues tècniques útils en aquest treball. El primer consisteix a afegir dos generadors de forma paral·lela, en aquest disseny proposat, cal tenir en compte algunes especificacions per a fer la viabilitat d'aquest circuit. No obstant això, la segona tècnica adoptada en aquest treball consisteix en una doble etapa de generadors, ambdues tècniques donen lloc a una bona actuació; en lloc d'un únic mòdul d'un generador de pols, les tècniques proposades en aquest treball augmenten l'amplitud al voltant del doble. Per transmetre i rebre polsos ultra-curts generats, s'han utilitzat dos tipus diferents d'antenes UWB. En primer lloc, una antena de Vivaldi amb un ample de banda d'uns 5,5 GHz de 600 MHz a 6 GHz. Mentre que la segona és una antena Vivaldi amb un ample de banda de 6 GHz de 400 MHz a 6.2 GHz. Mitjançant el sensor de radar ultra-ampla desenvolupat, es va realitzar la mesura de la prova. Incloïen propietats elèctriques i mesures de distància a les plaques metàl·liques, fusta i PVC. S'ha trobat que la incertesa del sensor de radar és de 14 mm (dades mesurades espantades entre + 14 mm per a un objectiu fix). El disseny i la implementació real condueixen a aconseguir un excel·lent prototip de rendiment per a una aplicació no destructiva.[EN] Due to the relevance of application fields of ultra-wideband radar sensor, and also the requirement of each specific application, there is an increasing demand of compact, low cost and high accuracy design of ultra-wideband radar sensor. With a view to addressing these demands, this thesis aims to propose an advanced UWB radar sensor. This research work deals with the design of the ultra-wideband (UWB) radar sensor for non-destructive (NDT) application. The design details include the design of ultra-short, high power pulse generator monocycle pulse with a minimum of ringing. The developed radar was build in bi-static configuration. The goal of this work is to measure the distance range and electrical properties of a target e.g, metal and dielectric materials, such as Polyvinyl chloride (PV C). To achieve this goal, a novel ultrashort, high power pulse generator (radar pulser) has been developed. The new pulse generator consists of a transistor operating in avalanche mode and a pulse sharpening circuit using a new model of step recovery diode (SRD). In order to converts the Gaussian pulse to a monocycle, a monocycle forming network (MFN) has been added. The developed pulse generator produces an electrical pulse with an amplitude of 12 V, a rise-time of 112 ps and pulse width (FWHM) of 155 ps. For the purpose to increase the amplitude of the pulses, two useful techniques have been proposed in this work. The first one consist of adding two generators in parallel, in this proposed design some specification was be taking into account to making the workability of this circuit. However, the second technic adopted in this work consists of a two-stage of generators, both technics give rise to a good performance; instead of a single module of a pulse generator, the techniques proposed in this work increase the amplitude around the double. In order to transmit and receive the generated ultra-short pulses, two different types of UWB antennas have been used. First, a Vivaldi antenna with a bandwidth of about 5.5 GHz from 600 MHz to 6 GHz. While the second is a Vivaldi antenna with a bandwidth of 6 GHz from 400 Mhz to 6,2 GHz. Using the developed ultra-wideband radar sensor, test measurement was performed. These included electrical properties as well as distance measurement towards metal plates, wood, and PVC. The uncertainty of the radar sensor has been found to be 14 mm (measured data scared within + 14 mm for a fixed target). The design and real implementation leading to achieve excellent performance prototype for a non-destructive application.Ahajjam, Y. (2019). Design and Implementation of a UWB Radar Sensor for Non-Destructive Application [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124057TESI

    Short Range Radar Based on UWB Technology

    Get PDF
    ISBN 978-953-307-029-

    Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator

    Get PDF
    We report and experimentally demonstrate the generation of impulse radio ultrawideband (UWB) pulses using a photonic chip frequency discriminator. The discriminator consists of three add-drop optical ring resonators (ORRs) which are fully programmable using thermo-optical tuning. This discriminator chip in combination with a phase modulator forms a temporal differentiator where phase modulation is converted to intensity modulation (PM-IM conversion). By means of tailoring the discriminator response using either the individual or the cascade of drop and through responses of the ORRs, first-order or second-order temporal differentiations are obtained. Using this principle, the generation of UWB monocycle, doublet and modified doublet pulses are demonstrated. The use of this CMOS-compatible discriminator is promising for the realization of a compact and low cost UWB transmitter

    An Accurate and Compact High Power Monocycle Pulse Transmitter for Microwave Ultra-Wideband Radar Sensors with an enhanced SRD model: Applications for Distance Measurement for lossy Materiel

    Get PDF
    [EN] In This paper, a high power sub-nanosecond pulse transmitter for Ultra-wideband radar sensor is presented. The backbone of the generator is considered as a step recovery diode and unique pulse injected into the circuit, which gives rise to an ultra-wide band Gaussian pulse. The transistor driver and transmission line pulse forming the whole network are investigated in detail. The main purpose of this work is to transform a square waveform signal to a driving pulse with the timing and the amplitude parameters required by the SRD to form an output Gaussian pulse, and then into high monocycle pulses. In simulation aspect, an improved output response is required, in this way a new model of step recovery diode has been proposed as a sharpener circuit. This proposition was applied to increase the rise-time of the pulses. For a good range radar, a high amplitude pulse is indispensable, especially when it comes to penetrate thick lossy materiel. In order to overcome this challenge, a simple technique and useful solution is introduced to increase the output amplitude of the transmitter. This technique consists to connect the outputs of two identical pulse generators in parallel respecting the restrictions required. The pulse transmitter circuit is completely fabricated using micro-strip structure technology characteristics. Waveforms of the generated monocycle pulses over 10V in amplitude with 3.5 % in overshoot have been obtained. Good agreement has been achieved between measurement and simulation results.The author gratefully acknowledges the financial support provided by Pierre and Marie Curie University under the EMMAG Scholarship. This study was supported by DIMAS group, ITACA institute at City Polytechnic of innovation from university Polytechnic of Valencia.Ahajjam, Y.; Aghzout, O.; Catalá Civera, JM.; Penaranda-Foix, FL.; Driouach, A. (2019). An Accurate and Compact High Power Monocycle Pulse Transmitter for Microwave Ultra-Wideband Radar Sensors with an enhanced SRD model: Applications for Distance Measurement for lossy Materiel. Advanced Electromagnetics. 8(3):76-82. https://doi.org/10.7716/aem.v8i3.676S76828
    corecore