496 research outputs found

    An Improved Wavelet‐Based Multivariable Fault Detection Scheme

    Get PDF
    Data observed from environmental and engineering processes are usually noisy and correlated in time, which makes the fault detection more difficult as the presence of noise degrades fault detection quality. Multiscale representation of data using wavelets is a powerful feature extraction tool that is well suited to denoising and decorrelating time series data. In this chapter, we combine the advantages of multiscale partial least squares (MSPLSs) modeling with those of the univariate EWMA (exponentially weighted moving average) monitoring chart, which results in an improved fault detection system, especially for detecting small faults in highly correlated, multivariate data. Toward this end, we applied EWMA chart to the output residuals obtained from MSPLS model. It is shown through simulated distillation column data the significant improvement in fault detection can be obtained by using the proposed methods as compared to the use of the conventional partial least square (PLS)‐based Q and EWMA methods and MSPLS‐based Q method

    Robust model-based fault diganosis [sic] for a DC zonal electrical distribution system

    Get PDF
    A key element of the U.S. Navy's transition to an electric naval force is an Integrated Power System (IPS) that provides continuity of service to vital systems despite combat damage. In order to meet subsequent survivability standards under a reduced manning constraint, the IPS system must include a fault tolerant control scheme, capable of achieving automated graceful degradation despite major disruptions involving cascading failures. Toward this objective, online modelbased residual generation techniques are proposed, which identify explicitly defined faults within a stochastic DC Zonal Electrical Distribution System (DC ZEDS). Two novel polynomial approaches to the design of unknown input observers (UIO) are developed to estimate the partial state and, under certain conditions, the unknown input. These methods are shown to apply to a larger class of systems compared to standard projection based approaches where the UIO rank condition is not satisfied. It is shown that the partial-state estimate is sufficient to the computation of residuals for fault diagnosis, even in such cases where full-state estimation is not possible. In order to reduce the complexity of the system, a modular approach to Fault Detection and Isolation (FDI) is presented. Here, the innovations generated from a bank of Kalman filters (some of them UIOs) act as a structured residual set for the stochastic DC ZEDS subsystem modules and are shown to detect and isolate various classes of faults. Certain mathematical models are also shown to effectively identify input/output consistency of systems in explicitly defined fault conditions. Numerical simulation results are based on the well-documented Office of Naval Research Control Challenge benchmark system, which represents a prototypical U.S. Navy shipboard IPS power distribution system.http://archive.org/details/robustmodelbased1094510226Approved for public release; distribution is unlimited

    Health monitoring of civil infrastructures by subspace system identification method: an overview

    Get PDF
    Structural health monitoring (SHM) is the main contributor of the future's smart city to deal with the need for safety, lower maintenance costs, and reliable condition assessment of structures. Among the algorithms used for SHM to identify the system parameters of structures, subspace system identification (SSI) is a reliable method in the time-domain that takes advantages of using extended observability matrices. Considerable numbers of studies have specifically concentrated on practical applications of SSI in recent years. To the best of author's knowledge, no study has been undertaken to review and investigate the application of SSI in the monitoring of civil engineering structures. This paper aims to review studies that have used the SSI algorithm for the damage identification and modal analysis of structures. The fundamental focus is on data-driven and covariance-driven SSI algorithms. In this review, we consider the subspace algorithm to resolve the problem of a real-world application for SHM. With regard to performance, a comparison between SSI and other methods is provided in order to investigate its advantages and disadvantages. The applied methods of SHM in civil engineering structures are categorized into three classes, from simple one-dimensional (1D) to very complex structures, and the detectability of the SSI for different damage scenarios are reported. Finally, the available software incorporating SSI as their system identification technique are investigated
    corecore