24 research outputs found

    Image Annotation and Topic Extraction Using Super-Word Latent Dirichlet

    Get PDF
    This research presents a multi-domain solution that uses text and images to iteratively improve automated information extraction. Stage I uses local text surrounding an embedded image to provide clues that help rank-order possible image annotations. These annotations are forwarded to Stage II, where the image annotations from Stage I are used as highly-relevant super-words to improve extraction of topics. The model probabilities from the super-words in Stage II are forwarded to Stage III where they are used to refine the automated image annotation developed in Stage I. All stages demonstrate improvement over existing equivalent algorithms in the literature

    Local selection of features and its applications to image search and annotation

    Get PDF
    In multimedia applications, direct representations of data objects typically involve hundreds or thousands of features. Given a query object, the similarity between the query object and a database object can be computed as the distance between their feature vectors. The neighborhood of the query object consists of those database objects that are close to the query object. The semantic quality of the neighborhood, which can be measured as the proportion of neighboring objects that share the same class label as the query object, is crucial for many applications, such as content-based image retrieval and automated image annotation. However, due to the existence of noisy or irrelevant features, errors introduced into similarity measurements are detrimental to the neighborhood quality of data objects. One way to alleviate the negative impact of noisy features is to use feature selection techniques in data preprocessing. From the original vector space, feature selection techniques select a subset of features, which can be used subsequently in supervised or unsupervised learning algorithms for better performance. However, their performance on improving the quality of data neighborhoods is rarely evaluated in the literature. In addition, most traditional feature selection techniques are global, in the sense that they compute a single set of features across the entire database. As a consequence, the possibility that the feature importance may vary across different data objects or classes of objects is neglected. To compute a better neighborhood structure for objects in high-dimensional feature spaces, this dissertation proposes several techniques for selecting features that are important to the local neighborhood of individual objects. These techniques are then applied to image applications such as content-based image retrieval and image label propagation. Firstly, an iterative K-NN graph construction method for image databases is proposed. A local variant of the Laplacian Score is designed for the selection of features for individual images. Noisy features are detected and sparsified iteratively from the original standardized feature vectors. This technique is incorporated into an approximate K-NN graph construction method so as to improve the semantic quality of the graph. Secondly, in a content-based image retrieval system, a generalized version of the Laplacian Score is used to compute different feature subspaces for images in the database. For online search, a query image is ranked in the feature spaces of database images. Those database images for which the query image is ranked highly are selected as the query results. Finally, a supervised method for the local selection of image features is proposed, for refining the similarity graph used in an image label propagation framework. By using only the selected features to compute the edges leading from labeled image nodes to unlabeled image nodes, better annotation accuracy can be achieved. Experimental results on several datasets are provided in this dissertation, to demonstrate the effectiveness of the proposed techniques for the local selection of features, and for the image applications under consideration

    Interactive models for latent information discovery in satellite images

    Get PDF
    The recent increase in Earth Observation (EO) missions has resulted in unprecedented volumes of multi-modal data to be processed, understood, used and stored in archives. The advanced capabilities of satellite sensors become useful only when translated into accurate, focused information, ready to be used by decision makers from various fields. Two key problems emerge when trying to bridge the gap between research, science and multi-user platforms: (1) The current systems for data access permit only queries by geographic location, time of acquisition, type of sensor, but this information is often less important than the latent, conceptual content of the scenes; (2) simultaneously, many new applications relying on EO data require the knowledge of complex image processing and computer vision methods for understanding and extracting information from the data. This dissertation designs two important concept modules of a theoretical image information mining (IIM) system for EO: semantic knowledge discovery in large databases and data visualization techniques. These modules allow users to discover and extract relevant conceptual information directly from satellite images and generate an optimum visualization for this information. The first contribution of this dissertation brings a theoretical solution that bridges the gap and discovers the semantic rules between the output of state-of-the-art classification algorithms and the semantic, human-defined, manually-applied terminology of cartographic data. The set of rules explain in latent, linguistic concepts the contents of satellite images and link the low-level machine language to the high-level human understanding. The second contribution of this dissertation is an adaptive visualization methodology used to assist the image analyst in understanding the satellite image through optimum representations and to offer cognitive support in discovering relevant information in the scenes. It is an interactive technique applied to discover the optimum combination of three spectral features of a multi-band satellite image that enhance visualization of learned targets and phenomena of interest. The visual mining module is essential for an IIM system because all EO-based applications involve several steps of visual inspection and the final decision about the information derived from satellite data is always made by a human operator. To ensure maximum correlation between the requirements of the analyst and the possibilities of the computer, the visualization tool models the human visual system and secures that a change in the image space is equivalent to a change in the perception space of the operator. This thesis presents novel concepts and methods that help users access and discover latent information in archives and visualize satellite scenes in an interactive, human-centered and information-driven workflow.Der aktuelle Anstieg an Erdbeobachtungsmissionen hat zu einem Anstieg von multi-modalen Daten geführt die verarbeitet, verstanden, benutzt und in Archiven gespeichert werden müssen. Die erweiterten Fähigkeiten von Satellitensensoren sind nur dann von Entscheidungstraegern nutzbar, wenn sie in genaue, fokussierte Information liefern. Es bestehen zwei Schlüsselprobleme beim Versuch die Lücke zwischen Forschung, Wissenschaft und Multi-User-Systeme zu füllen: (1) Die aktuellen Systeme für Datenzugriffe erlauben nur Anfragen basierend auf geografischer Position, Aufzeichnungszeit, Sensortyp. Aber diese Informationen sind oft weniger wichtig als der latente, konzeptuelle Inhalt der Szenerien. (2) Viele neue Anwendungen von Erdbeobachtungsdaten benötigen Wissen über komplexe Bildverarbeitung und Computer Vision Methoden um Information verstehen und extrahieren zu können. Diese Dissertation zeigt zwei wichtige Konzeptmodule eines theoretischen Image Information Mining (IIM) Systems für Erdbeobachtung auf: Semantische Informationsentdeckung in grossen Datenbanken und Datenvisualisierungstechniken. Diese Module erlauben Benutzern das Entdecken und Extrahieren relevanter konzeptioneller Informationen direkt aus Satellitendaten und die Erzeugung von optimalen Visualisierungen dieser Informationen. Der erste Beitrag dieser Dissertation bringt eine theretische Lösung welche diese Lücke überbrückt und entdeckt semantische Regeln zwischen dem Output von state-of-the-art Klassifikationsalgorithmen und semantischer, menschlich definierter, manuell angewendete Terminologie von kartographischen Daten. Ein Satz von Regeln erkläret in latenten, linguistischen Konzepten den Inhalte von Satellitenbildern und verbinden die low-level Maschinensprache mit high-level menschlichen Verstehen. Der zweite Beitrag dieser Dissertation ist eine adaptive Visualisierungsmethode die einem Bildanalysten im Verstehen der Satellitenbilder durch optimale Repräsentation hilft und die kognitive Unterstützung beim Entdecken von relevenanter Informationen in Szenerien bietet. Die Methode ist ein interaktive Technik die angewendet wird um eine optimale Kombination von von drei Spektralfeatures eines Multiband-Satellitenbildes welche die Visualisierung von gelernten Zielen and Phänomenen ermöglichen. Das visuelle Mining-Modul ist essentiell für IIM Systeme da alle erdbeobachtungsbasierte Anwendungen mehrere Schritte von visueller Inspektion benötigen und davon abgeleitete Informationen immer vom Operator selbst gemacht werden müssen. Um eine maximale Korrelation von Anforderungen des Analysten und den Möglichkeiten von Computern sicher zu stellen, modelliert das Visualisierungsmodul das menschliche Wahrnehmungssystem und stellt weiters sicher, dass eine Änderung im Bildraum äquivalent zu einer Änderung der Wahrnehmung durch den Operator ist. Diese These präsentieret neuartige Konzepte und Methoden, die Anwendern helfen latente Informationen in Archiven zu finden und visualisiert Satellitenszenen in einem interaktiven, menschlich zentrierten und informationsgetriebenen Arbeitsprozess

    On Improving Generalization of CNN-Based Image Classification with Delineation Maps Using the CORF Push-Pull Inhibition Operator

    Get PDF
    Deployed image classification pipelines are typically dependent on the images captured in real-world environments. This means that images might be affected by different sources of perturbations (e.g. sensor noise in low-light environments). The main challenge arises by the fact that image quality directly impacts the reliability and consistency of classification tasks. This challenge has, hence, attracted wide interest within the computer vision communities. We propose a transformation step that attempts to enhance the generalization ability of CNN models in the presence of unseen noise in the test set. Concretely, the delineation maps of given images are determined using the CORF push-pull inhibition operator. Such an operation transforms an input image into a space that is more robust to noise before being processed by a CNN. We evaluated our approach on the Fashion MNIST data set with an AlexNet model. It turned out that the proposed CORF-augmented pipeline achieved comparable results on noise-free images to those of a conventional AlexNet classification model without CORF delineation maps, but it consistently achieved significantly superior performance on test images perturbed with different levels of Gaussian and uniform noise

    15th International Conference, Salamanca, Spain, September 10-12, 2014. Proceedings

    Get PDF
    This book constitutes the refereed proceedings of the 15th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2014, held in Salamanca, Spain, in September 2014. The 60 revised full papers presented were carefully reviewed and selected from about 120 submissions. These papers provided a valuable collection of recent research outcomes in data engineering and automated learning, from methodologies, frameworks, and techniques to applications. In addition the conference provided a good sample of current topics from methodologies, frameworks, and techniques to applications and case studies. The techniques include computational intelligence, big data analytics, social media techniques, multi-objective optimization, regression, classification, clustering, biological data processing, text processing, and image/video analysis

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Pre-processing, classification and semantic querying of large-scale Earth observation spaceborne/airborne/terrestrial image databases: Process and product innovations.

    Get PDF
    By definition of Wikipedia, “big data is the term adopted for a collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications. The big data challenges typically include capture, curation, storage, search, sharing, transfer, analysis and visualization”. Proposed by the intergovernmental Group on Earth Observations (GEO), the visionary goal of the Global Earth Observation System of Systems (GEOSS) implementation plan for years 2005-2015 is systematic transformation of multisource Earth Observation (EO) “big data” into timely, comprehensive and operational EO value-adding products and services, submitted to the GEO Quality Assurance Framework for Earth Observation (QA4EO) calibration/validation (Cal/Val) requirements. To date the GEOSS mission cannot be considered fulfilled by the remote sensing (RS) community. This is tantamount to saying that past and existing EO image understanding systems (EO-IUSs) have been outpaced by the rate of collection of EO sensory big data, whose quality and quantity are ever-increasing. This true-fact is supported by several observations. For example, no European Space Agency (ESA) EO Level 2 product has ever been systematically generated at the ground segment. By definition, an ESA EO Level 2 product comprises a single-date multi-spectral (MS) image radiometrically calibrated into surface reflectance (SURF) values corrected for geometric, atmospheric, adjacency and topographic effects, stacked with its data-derived scene classification map (SCM), whose thematic legend is general-purpose, user- and application-independent and includes quality layers, such as cloud and cloud-shadow. Since no GEOSS exists to date, present EO content-based image retrieval (CBIR) systems lack EO image understanding capabilities. Hence, no semantic CBIR (SCBIR) system exists to date either, where semantic querying is synonym of semantics-enabled knowledge/information discovery in multi-source big image databases. In set theory, if set A is a strict superset of (or strictly includes) set B, then A B. This doctoral project moved from the working hypothesis that SCBIR computer vision (CV), where vision is synonym of scene-from-image reconstruction and understanding EO image understanding (EO-IU) in operating mode, synonym of GEOSS ESA EO Level 2 product human vision. Meaning that necessary not sufficient pre-condition for SCBIR is CV in operating mode, this working hypothesis has two corollaries. First, human visual perception, encompassing well-known visual illusions such as Mach bands illusion, acts as lower bound of CV within the multi-disciplinary domain of cognitive science, i.e., CV is conditioned to include a computational model of human vision. Second, a necessary not sufficient pre-condition for a yet-unfulfilled GEOSS development is systematic generation at the ground segment of ESA EO Level 2 product. Starting from this working hypothesis the overarching goal of this doctoral project was to contribute in research and technical development (R&D) toward filling an analytic and pragmatic information gap from EO big sensory data to EO value-adding information products and services. This R&D objective was conceived to be twofold. First, to develop an original EO-IUS in operating mode, synonym of GEOSS, capable of systematic ESA EO Level 2 product generation from multi-source EO imagery. EO imaging sources vary in terms of: (i) platform, either spaceborne, airborne or terrestrial, (ii) imaging sensor, either: (a) optical, encompassing radiometrically calibrated or uncalibrated images, panchromatic or color images, either true- or false color red-green-blue (RGB), multi-spectral (MS), super-spectral (SS) or hyper-spectral (HS) images, featuring spatial resolution from low (> 1km) to very high (< 1m), or (b) synthetic aperture radar (SAR), specifically, bi-temporal RGB SAR imagery. The second R&D objective was to design and develop a prototypical implementation of an integrated closed-loop EO-IU for semantic querying (EO-IU4SQ) system as a GEOSS proof-of-concept in support of SCBIR. The proposed closed-loop EO-IU4SQ system prototype consists of two subsystems for incremental learning. A primary (dominant, necessary not sufficient) hybrid (combined deductive/top-down/physical model-based and inductive/bottom-up/statistical model-based) feedback EO-IU subsystem in operating mode requires no human-machine interaction to automatically transform in linear time a single-date MS image into an ESA EO Level 2 product as initial condition. A secondary (dependent) hybrid feedback EO Semantic Querying (EO-SQ) subsystem is provided with a graphic user interface (GUI) to streamline human-machine interaction in support of spatiotemporal EO big data analytics and SCBIR operations. EO information products generated as output by the closed-loop EO-IU4SQ system monotonically increase their value-added with closed-loop iterations

    Efficient Decision Support Systems

    Get PDF
    This series is directed to diverse managerial professionals who are leading the transformation of individual domains by using expert information and domain knowledge to drive decision support systems (DSSs). The series offers a broad range of subjects addressed in specific areas such as health care, business management, banking, agriculture, environmental improvement, natural resource and spatial management, aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs; Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications of DSSs in multidisciplinary domains. The book is shaped decision support strategies in the new infrastructure that assists the readers in full use of the creative technology to manipulate input data and to transform information into useful decisions for decision makers

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF
    corecore