18,797 research outputs found

    Can retinal ganglion cell dipoles seed iso-orientation domains in the visual cortex?

    Get PDF
    It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moir\'{e}-Interference between hexagonal ON/OFF RGC mosaics. While this Moir\'{e}-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex.Comment: 9 figures + 1 Supplementary figure and 1 Supplementary tabl

    Topic Map Generation Using Text Mining

    Get PDF
    Starting from text corpus analysis with linguistic and statistical analysis algorithms, an infrastructure for text mining is described which uses collocation analysis as a central tool. This text mining method may be applied to different domains as well as languages. Some examples taken form large reference databases motivate the applicability to knowledge management using declarative standards of information structuring and description. The ISO/IEC Topic Map standard is introduced as a candidate for rich metadata description of information resources and it is shown how text mining can be used for automatic topic map generation

    Aquatics reconstruction software: the design of a diagnostic tool based on computer vision algorithms

    Get PDF
    Computer vision methods can be applied to a variety of medical and surgical applications, and many techniques and algorithms are available that can be used to recover 3D shapes and information from images range and volume data. Complex practical applications, however, are rarely approachable with a single technique, and require detailed analysis on how they can be subdivided in subtasks that are computationally treatable and that, at the same time, allow for the appropriate level of user-interaction. In this paper we show an example of a complex application where, following criteria of efficiency, reliability and user friendliness, several computer vision techniques have been selected and customized to build a system able to support diagnosis and endovascular treatment of Abdominal Aortic Aneurysms. The system reconstructs the geometrical representation of four different structures related to the aorta (vessel lumen, thrombus, calcifications and skeleton) from CT angiography data. In this way it supports the three dimensional measurements required for a careful geometrical evaluation of the vessel, that is fundamental to decide if the treatment is necessary and to perform, in this case, its planning. The system has been realized within the European trial AQUATICS (IST-1999-20226 EUTIST-M WP 12), and it has been widely tested on clinical data

    Automatic Image Based Time Varying 3D Feature Extraction and Tracking

    Get PDF
    3D time-varying data sets are complex. The intrinsics of those data cannot be readily comprehended by users solely based on visual investigation. Computational tools such as feature extraction and tracking are often necessary. Until now, most existing algorithms in this domain work effectively in the object space, relying on prior knowledge of the data. How to find a more flexible and efficient method which can perform automatically to implement extraction and tracking remains an attractive topic. This thesis presents a new image-based method that extracts and tracks the 3D time- varying volume data sets. The innovation of the proposed approach is two-fold. First, all analyses are performed in the image space on volume rendered images without accessing the actual volume data itself. The image-based processing will help to both save storage space in the memory and reduce computation burden. Secondly, the new approach does not require any prior knowledge of the user-defined “feature” or a built model. All the parameters used by the algorithms are automatically determined by the system itself, thus flexibility and efficiency can be achieved at the same time. The proposed image-based feature extraction and tracking system consists of four components: feature segmentation (or extraction), feature description (or shape analysis), classification, and feature tracking. Feature segmentation is to identify and label individual features from the image so that we can describe and track them separately. We combine both region-based and edge-based segmentation approaches to implement the extraction process. Feature description is to analyze each feature and derive a vector to describe the feature such that the subsequent tracking step does not have to rely on the entire feature extracted, but instead a much smaller and informative feature descriptor. Classification is to identify the corresponding features from two consecutive image frames along both the time and the spatial domain. Feature tracking is to study and model the evolution of features based on the correspondence computation result from classification stage. Experimental results show that the image-based feature extraction and tracking system provides high fidelity with great efficiency

    A fully automatic CAD-CTC system based on curvature analysis for standard and low-dose CT data

    Get PDF
    Computed tomography colonography (CTC) is a rapidly evolving noninvasive medical investigation that is viewed by radiologists as a potential screening technique for the detection of colorectal polyps. Due to the technical advances in CT system design, the volume of data required to be processed by radiologists has increased significantly, and as a consequence the manual analysis of this information has become an increasingly time consuming process whose results can be affected by inter- and intrauser variability. The aim of this paper is to detail the implementation of a fully integrated CAD-CTC system that is able to robustly identify the clinically significant polyps in the CT data. The CAD-CTC system described in this paper is a multistage implementation whose main system components are: 1) automatic colon segmentation; 2) candidate surface extraction; 3) feature extraction; and 4) classification. Our CAD-CTC system performs at 100% sensitivity for polyps larger than 10 mm, 92% sensitivity for polyps in the range 5 to 10 mm, and 57.14% sensitivity for polyps smaller than 5 mm with an average of 3.38 false positives per dataset. The developed system has been evaluated on synthetic and real patient CT data acquired with standard and low-dose radiation levels

    A PDE Approach to Data-driven Sub-Riemannian Geodesics in SE(2)

    Get PDF
    We present a new flexible wavefront propagation algorithm for the boundary value problem for sub-Riemannian (SR) geodesics in the roto-translation group SE(2)=R2⋊S1SE(2) = \mathbb{R}^2 \rtimes S^1 with a metric tensor depending on a smooth external cost C:SE(2)→[δ,1]\mathcal{C}:SE(2) \to [\delta,1], δ>0\delta>0, computed from image data. The method consists of a first step where a SR-distance map is computed as a viscosity solution of a Hamilton-Jacobi-Bellman (HJB) system derived via Pontryagin's Maximum Principle (PMP). Subsequent backward integration, again relying on PMP, gives the SR-geodesics. For C=1\mathcal{C}=1 we show that our method produces the global minimizers. Comparison with exact solutions shows a remarkable accuracy of the SR-spheres and the SR-geodesics. We present numerical computations of Maxwell points and cusp points, which we again verify for the uniform cost case C=1\mathcal{C}=1. Regarding image analysis applications, tracking of elongated structures in retinal and synthetic images show that our line tracking generically deals with crossings. We show the benefits of including the sub-Riemannian geometry.Comment: Extended version of SSVM 2015 conference article "Data-driven Sub-Riemannian Geodesics in SE(2)
    • …
    corecore