17,788 research outputs found

    A Framework for High-Accuracy Privacy-Preserving Mining

    Full text link
    To preserve client privacy in the data mining process, a variety of techniques based on random perturbation of data records have been proposed recently. In this paper, we present a generalized matrix-theoretic model of random perturbation, which facilitates a systematic approach to the design of perturbation mechanisms for privacy-preserving mining. Specifically, we demonstrate that (a) the prior techniques differ only in their settings for the model parameters, and (b) through appropriate choice of parameter settings, we can derive new perturbation techniques that provide highly accurate mining results even under strict privacy guarantees. We also propose a novel perturbation mechanism wherein the model parameters are themselves characterized as random variables, and demonstrate that this feature provides significant improvements in privacy at a very marginal cost in accuracy. While our model is valid for random-perturbation-based privacy-preserving mining in general, we specifically evaluate its utility here with regard to frequent-itemset mining on a variety of real datasets. The experimental results indicate that our mechanisms incur substantially lower identity and support errors as compared to the prior techniques

    Secret charing vs. encryption-based techniques for privacy preserving data mining

    Get PDF
    Privacy preserving querying and data publishing has been studied in the context of statistical databases and statistical disclosure control. Recently, large-scale data collection and integration efforts increased privacy concerns which motivated data mining researchers to investigate privacy implications of data mining and how data mining can be performed without violating privacy. In this paper, we first provide an overview of privacy preserving data mining focusing on distributed data sources, then we compare two technologies used in privacy preserving data mining. The first technology is encryption based, and it is used in earlier approaches. The second technology is secret-sharing which is recently being considered as a more efficient approach

    Efficient Privacy Preserving Distributed Clustering Based on Secret Sharing

    Get PDF
    In this paper, we propose a privacy preserving distributed clustering protocol for horizontally partitioned data based on a very efficient homomorphic additive secret sharing scheme. The model we use for the protocol is novel in the sense that it utilizes two non-colluding third parties. We provide a brief security analysis of our protocol from information theoretic point of view, which is a stronger security model. We show communication and computation complexity analysis of our protocol along with another protocol previously proposed for the same problem. We also include experimental results for computation and communication overhead of these two protocols. Our protocol not only outperforms the others in execution time and communication overhead on data holders, but also uses a more efficient model for many data mining applications
    corecore