105,342 research outputs found

    Ground state of the Bethe-lattice spin glass and running time of an exact optimization algorithm

    Get PDF
    We study the Ising spin glass on random graphs with fixed connectivity z and with a Gaussian distribution of the couplings, with mean \mu and unit variance. We compute exact ground states by using a sophisticated branch-and-cut method for z=4,6 and system sizes up to N=1280 for different values of \mu. We locate the spin-glass/ferromagnet phase transition at \mu = 0.77 +/- 0.02 (z=4) and \mu = 0.56 +/- 0.02 (z=6). We also compute the energy and magnetization in the Bethe-Peierls approximation with a stochastic method, and estimate the magnitude of replica symmetry breaking corrections. Near the phase transition, we observe a sharp change of the median running time of our implementation of the algorithm, consistent with a change from a polynomial dependence on the system size, deep in the ferromagnetic phase, to slower than polynomial in the spin-glass phase.Comment: 10 pages, RevTex, 10 eps figures. Some changes in the tex

    First excitations in two- and three-dimensional random-field Ising systems

    Full text link
    We present results on the first excited states for the random-field Ising model. These are based on an exact algorithm, with which we study the excitation energies and the excitation sizes for two- and three-dimensional random-field Ising systems with a Gaussian distribution of the random fields. Our algorithm is based on an approach of Frontera and Vives which, in some cases, does not yield the true first excited states. Using the corrected algorithm, we find that the order-disorder phase transition for three dimensions is visible via crossings of the excitations-energy curves for different system sizes, while in two-dimensions these crossings converge to zero disorder. Furthermore, we obtain in three dimensions a fractal dimension of the excitations cluster of d_s=2.42(2). We also provide analytical droplet arguments to understand the behavior of the excitation energies for small and large disorder as well as close to the critical point.Comment: 17 pages, 12 figure

    Low Energy Excitations in Spin Glasses from Exact Ground States

    Get PDF
    We investigate the nature of the low-energy, large-scale excitations in the three-dimensional Edwards-Anderson Ising spin glass with Gaussian couplings and free boundary conditions, by studying the response of the ground state to a coupling-dependent perturbation introduced previously. The ground states are determined exactly for system sizes up to 12^3 spins using a branch and cut algorithm. The data are consistent with a picture where the surface of the excitations is not space-filling, such as the droplet or the ``TNT'' picture, with only minimal corrections to scaling. When allowing for very large corrections to scaling, the data are also consistent with a picture with space-filling surfaces, such as replica symmetry breaking. The energy of the excitations scales with their size with a small exponent \theta', which is compatible with zero if we allow moderate corrections to scaling. We compare the results with data for periodic boundary conditions obtained with a genetic algorithm, and discuss the effects of different boundary conditions on corrections to scaling. Finally, we analyze the performance of our branch and cut algorithm, finding that it is correlated with the existence of large-scale,low-energy excitations.Comment: 18 Revtex pages, 16 eps figures. Text significantly expanded with more discussion of the numerical data. Fig.11 adde

    On the Inversion of High Energy Proton

    Full text link
    Inversion of the K-fold stochastic autoconvolution integral equation is an elementary nonlinear problem, yet there are no de facto methods to solve it with finite statistics. To fix this problem, we introduce a novel inverse algorithm based on a combination of minimization of relative entropy, the Fast Fourier Transform and a recursive version of Efron's bootstrap. This gives us power to obtain new perspectives on non-perturbative high energy QCD, such as probing the ab initio principles underlying the approximately negative binomial distributions of observed charged particle final state multiplicities, related to multiparton interactions, the fluctuating structure and profile of proton and diffraction. As a proof-of-concept, we apply the algorithm to ALICE proton-proton charged particle multiplicity measurements done at different center-of-mass energies and fiducial pseudorapidity intervals at the LHC, available on HEPData. A strong double peak structure emerges from the inversion, barely visible without it.Comment: 29 pages, 10 figures, v2: extended analysis (re-projection ratios, 2D

    Transport on percolation clusters with power-law distributed bond strengths: when do blobs matter?

    Get PDF
    The simplest transport problem, namely maxflow, is investigated on critical percolation clusters in two and three dimensions, using a combination of extremal statistics arguments and exact numerical computations, for power-law distributed bond strengths of the type P(σ)σαP(\sigma) \sim \sigma^{-\alpha}. Assuming that only cutting bonds determine the flow, the maxflow critical exponent \ve is found to be \ve(\alpha)=(d-1) \nu + 1/(1-\alpha). This prediction is confirmed with excellent accuracy using large-scale numerical simulation in two and three dimensions. However, in the region of anomalous bond capacity distributions (0α10\leq \alpha \leq 1) we demonstrate that, due to cluster-structure fluctuations, it is not the cutting bonds but the blobs that set the transport properties of the backbone. This ``blob-dominance'' avoids a cross-over to a regime where structural details, the distribution of the number of red or cutting bonds, would set the scaling. The restored scaling exponents however still follow the simplistic red bond estimate. This is argued to be due to the existence of a hierarchy of so-called minimum cut-configurations, for which cutting bonds form the lowest level, and whose transport properties scale all in the same way. We point out the relevance of our findings to other scalar transport problems (i.e. conductivity).Comment: 9 pages + Postscript figures. Revtex4+psfig. Submitted to PR

    Universality-class dependence of energy distributions in spin glasses

    Get PDF
    We study the probability distribution function of the ground-state energies of the disordered one-dimensional Ising spin chain with power-law interactions using a combination of parallel tempering Monte Carlo and branch, cut, and price algorithms. By tuning the exponent of the power-law interactions we are able to scan several universality classes. Our results suggest that mean-field models have a non-Gaussian limiting distribution of the ground-state energies, whereas non-mean-field models have a Gaussian limiting distribution. We compare the results of the disordered one-dimensional Ising chain to results for a disordered two-leg ladder, for which large system sizes can be studied, and find a qualitative agreement between the disordered one-dimensional Ising chain in the short-range universality class and the disordered two-leg ladder. We show that the mean and the standard deviation of the ground-state energy distributions scale with a power of the system size. In the mean-field universality class the skewness does not follow a power-law behavior and converges to a nonzero constant value. The data for the Sherrington-Kirkpatrick model seem to be acceptably well fitted by a modified Gumbel distribution. Finally, we discuss the distribution of the internal energy of the Sherrington-Kirkpatrick model at finite temperatures and show that it behaves similar to the ground-state energy of the system if the temperature is smaller than the critical temperature.Comment: 15 pages, 20 figures, 1 tabl

    Conformal Mapping on Rough Boundaries I: Applications to harmonic problems

    Full text link
    The aim of this study is to analyze the properties of harmonic fields in the vicinity of rough boundaries where either a constant potential or a zero flux is imposed, while a constant field is prescribed at an infinite distance from this boundary. We introduce a conformal mapping technique that is tailored to this problem in two dimensions. An efficient algorithm is introduced to compute the conformal map for arbitrarily chosen boundaries. Harmonic fields can then simply be read from the conformal map. We discuss applications to "equivalent" smooth interfaces. We study the correlations between the topography and the field at the surface. Finally we apply the conformal map to the computation of inhomogeneous harmonic fields such as the derivation of Green function for localized flux on the surface of a rough boundary

    A New Push-Relabel Algorithm for Sparse Networks

    Full text link
    In this paper, we present a new push-relabel algorithm for the maximum flow problem on flow networks with nn vertices and mm arcs. Our algorithm computes a maximum flow in O(mn)O(mn) time on sparse networks where m=O(n)m = O(n). To our knowledge, this is the first O(mn)O(mn) time push-relabel algorithm for the m=O(n)m = O(n) edge case; previously, it was known that push-relabel implementations could find a max-flow in O(mn)O(mn) time when m=Ω(n1+ϵ)m = \Omega(n^{1+\epsilon}) (King, et. al., SODA `92). This also matches a recent flow decomposition-based algorithm due to Orlin (STOC `13), which finds a max-flow in O(mn)O(mn) time on sparse networks. Our main result is improving on the Excess-Scaling algorithm (Ahuja & Orlin, 1989) by reducing the number of nonsaturating pushes to O(mn)O(mn) across all scaling phases. This is reached by combining Ahuja and Orlin's algorithm with Orlin's compact flow networks. A contribution of this paper is demonstrating that the compact networks technique can be extended to the push-relabel family of algorithms. We also provide evidence that this approach could be a promising avenue towards an O(mn)O(mn)-time algorithm for all edge densities.Comment: 23 pages. arXiv admin note: substantial text overlap with arXiv:1309.2525 - This version includes an extension of the result to the O(n) edge cas
    corecore