525 research outputs found

    Overlay networks for smart grids

    Get PDF

    On forwarding state control in VPN multicast based on MPLS multipoint LSPs

    Get PDF
    This work is at: 2012 IEEE 13th International Conference on High Performance Switching and Routing took place June 24-27,2012 in Belgrade, Serbia. Web to event: http://hpsr2012.etf.bg.ac.rs/index.phpThe demand for multicast-capable VPN services, like Virtual Private LAN Service (VPLS), has grown quickly in the last years. In order to save bandwidth, MPLS point-to-multipoint LSPs could be used, but the VPN-specific state information to be handled inside the network may exceed the capacity of core nodes. A well-known solution for this is to aggregate the multicast/broadcast traffic of multiple VPNs into shared p2mp LSP trees. In shared trees, although some bandwidth is wasted because a fraction of the packets are delivered to non-member leaves (either not in the VPN broadcast or multicast group), there is wide working range where a good state vs. bandwidth trade-off is achieved. In this paper we enhance and improve previous works that analyze this trade-off. We propose new techniques for multicast traffic aggregation of VPNs in MPLS-based networks, with the objective of observing the behavior of the aggregation philosophy for different aggregation degrees, which should be very useful for network design and deployment purposes. We assess the aggregation heuristics over different reference networks and VPN geographic distributions. Simulations give a quantitative indication of the relevance of intelligent aggregation, of geographical distribution and group sizes.The work described in this paper was carried out with the support of MEDIANET PRICIT 2009/TIC-1468, from the Community of Madrid; and Fundación Carolina, Spain.Publicad

    Link-Level Access Cloud Architecture Design Based on SDN for 5G Networks

    Get PDF
    The exponential growth of data traffic and connected devices, and the reduction of latency and costs, are considered major challenges for future mobile communication networks. The satisfaction of these challenges motivates revisiting the architecture of these networks. We propose an SDN-based design of a hierarchical architecture for the 5G packet core. In this article we focus on the design of its access cloud with the goal of providing low latency and scalable Ethernet-like support to terminals and MTC devices including mobility management. We examine and address its challenges in terms of network scalability and support for link-level mobility. We propose a link-level architecture that forwards frames from and to edge network elements (AP and routers) with a label that identifies the APs through which the terminal is reachable. An SDN local controller tracks and updates the users' location information at the edge network elements. Additionally, we propose to delegate in SDN local controllers the handling of non-scalable operations, such as broadcast and multicast messages, and network management procedures.This work is partially supported by the Spanish Ministry of Economy and Competitiveness (project TIN2013-46223-P), and the Granada Excellence Network of Innovation Laboratories (projects GENIL-PYR-2014-20 and GENIL-PYR-2014-18)

    Multi-layer virtual transport network management

    Full text link
    Nowadays there is an increasing need for a general paradigm which can simplify network management and further enable network innovations. Software Defined Networking (SDN) is an efficient way to make the network programmable and reduce management complexity, however it is plagued with limitations inherited from the legacy Internet (TCP/IP) architecture. In this paper, in response to limitations of current Software Defined Networking (SDN) management solutions, we propose a recursive approach to enterprise network management, where network management is done through managing various Virtual Transport Networks (VTNs) over different scopes (i.e., regions of operation). Different from the traditional virtual network model which mainly focuses on routing/tunneling, our VTN provides communication service with explicit Quality-of-Service (QoS) support for applications via transport flows, and it involves all mechanisms (e.g., addressing, routing, error and flow control, resource allocation) needed to support such transport flows. Based on this approach, we design and implement a management architecture, which recurses the same VTN-based management mechanism for enterprise network management. Our experimental results show that our management architecture achieves better performance.National Science Foundation awards: CNS-0963974 and CNS-1346688

    The internet: A global telecommunications solution?

    Full text link
    The provision and support of new distributed multimedia services are of prime concern for telecommunications operators and suppliers. Clearly, the potential of the latest Internet protocols to contribute communications components is of considerable interest to them. In this article we first review some of the new types of application and their requirements, and identify the need to support applications that have strict QoS requirements, the so-called critical applications. We review two proposals for enhancing the Internet service architecture. In addition to the integrated services work of the IETF, we look at the more recent proposals for differentiated services in the Internet. We then individually review recent protocol developments proposed to improve the Internet, and to support real-time and multimedia communications. These are IPv6 (the new version of the Internet Protocol), Resource reSerVation Protocol, and Multiprotocol Label Switching, respectively. In each case, we attempt to provide critical reviews in order to assess their suitability for this purpose. Finally, we indicate what the basis of the future infrastructure might be in order to support the full variety of application requirements

    The NOBEL2 approach to resilience in future transport networks

    Get PDF
    IST project NOBEL2 results on resilience strategies for next-generation optical transport networks are presented, paving the way towards cost-effective, scalable and easy-to-maintain multi-service network architectures.Postprint (published version

    Providing guaranteed QoS in the hose-modeled VPN

    Get PDF
    With the development of the Internet, Internet service providers (ISPs) are required to offer revenue-generating and value-added services instead of only providing bandwidth and access services. Virtual Private Network (VPN) is one of the most important value-added services for ISPs. The classical VPN service is provided by implementing layer 2 technologies, either Frame Relay (FR) or Asynchronous Transfer Mode (ATM). With FR or ATM, virtual circuits are created before data delivery. Since the bandwidth and buffers are reserved, the QoS requirements can be naturally guaranteed. In the past few years, layer 3 VPN technologies are widely deployed due to the desirable performance in terms of flexibility, scalability and simplicity. Layer 3 VPNs are built upon IP tunnels, e.g., by using PPTP, L2TP or IPSec. Since IP is best-of-effort in nature, the QoS requirement cannot be guaranteed in layer 3 VPNs. Actually, layer 3 VPN service can only provide secure connectivity, i.e., protecting and authenticating IP packets between gateways or hosts in a VPN. Without doubt, with more applications on voice, audio and video being used in the Internet, the provision of QoS is one of the most important parts of the emerging services provided by ISPs. An intriguing question is: Is it possible to obtain the best of both layer 2 and 3 VPN? Is it possible to provide guaranteed or predictable QoS, as in layer 2 VPNs, while maintaining the flexibility and simplicity in layer 3 VPN? This question is the starting point of this study. The recently proposed hose model for VPN possesses desirable properties in terms of flexibility, scalability and multiplexing gain. However, the classic fair bandwidth allocation schemes and weighted fair queuing schemes raise the issue of low overall utilization in this model. A new fluid model for provider-provisioned virtual private network (PPVPN) is proposed in this dissertation. Based on the proposed model, an idealized fluid bandwidth allocation scheme is developed. This scheme is proven, analytically, to have the following properties: 1) maximize the overall throughput of the VPN without compromising fairness; 2) provide a mechanism that enables the VPN customers to allocate the bandwidth according to their requirements by assigning different weights to different hose flows, and thus obtain the predictable QoS performance; and 3) improve the overall throughput of the ISPs\u27 network. To approximate the idealized fluid scheme in the real world, the 2-dimensional deficit round robin (2-D DRR and 2-D DRR+) schemes are proposed. The integration of the proposed schemes with the best-effort traffic within the framework of virtual-router-based VPN is also investigated. The 2-D DRR and 2-D DER-+ schemes can be extended to multi-dimensional schemes to be employed in those applications which require a hierarchical scheduling architecture. To enhance the scalability, a more scalable non-per-flow-based scheme for output queued switches is developed as well, and the integration of this scheme within the framework of the MPLS VPN and applications for multicasting traffics is discussed. The performance and properties of these schemes are analyzed
    corecore