305 research outputs found

    Personal area technologies for internetworked services

    Get PDF

    Low Complexity Estimator for Downlink MC-CDMA System

    Get PDF
    Multi-carrier code division multiple access (MC-CDMA) is a strong candidate for downlink of future mobile communication to obtain high data rates. Nevertheless, during transmission over fading channel, performance of MC-CDMA systems are highly degraded due to presence of multiple access interference(MAI).Therefore channel estimation play an important role in overcoming MAI and characterising the channel to correct the received signal. A low complexity estimator for downlink MC-CDMA is proposed and simulated by MATLAB over a frequency selective fading channel. Comparing with conventional MMSE this algorithm has advantages of low computational complexity. The simulation results demonstrate that MC-CDMA with proposed channel estimator outperforms the OFDM in the practical case of Rayleigh fading environment

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Suboptimal maximum-likelihood multiuser detection of synchronous CDMA on frequency-selective multipath channels

    Full text link

    An Efficient ICI Cancellation Scheme to Mitigate the Effect of ICI on OFDM Systems

    Get PDF
    Inter-carrier interference (ICI) emerges in orthogonal frequency division multiplexing (OFDM) systems used for mobile communication as a consequence of the Doppler Effect\u27s loss of orthogonality among subcarriers. Inter-Carrier Interference (ICI), which affects every subcarrier, drastically lowers performance. The performance of OFDM systems may be enhanced using a variety of ICI mitigation strategies. Comparable subcarrier frequency offsets are guaranteed by the premise that the OFDM transmission bandwidth is suitably modest in the majority of ICI mitigation strategies, on the other hand. The frequency offsets between each subcarrier might change, hence a wideband OFDM system in a situation with high mobility is investigated. Furthermore, the suggested ICI cancellation approach, Total ICI Cancellation, does not reduce bandwidth efficiency or transmission rate. As an example, the Total ICI Cancellation approach uses the ICI matrix\u27s orthogonality to provide perfect ICI cancellation and a significant boost in BER at a linearly increasing cost. The suggested technique, which matches the BER performance of a wideband OFDM system without ICI, offers the best BER performance possible in the presence of frequency offset and time shifts in the channel, according to simulation findings in the AWGN and multipath fading channels

    Sub-graph based joint sparse graph for sparse code multiple access systems

    Get PDF
    Sparse code multiple access (SCMA) is a promising air interface candidate technique for next generation mobile networks, especially for massive machine type communications (mMTC). In this paper, we design a LDPC coded SCMA detector by combining the sparse graphs of LDPC and SCMA into one joint sparse graph (JSG). In our proposed scheme, SCMA sparse graph (SSG) defined by small size indicator matrix is utilized to construct the JSG, which is termed as sub-graph based joint sparse graph of SCMA (SG-JSG-SCMA). In this paper, we first study the binary-LDPC (B-LDPC) coded SGJSG- SCMA system. To combine the SCMA variable node (SVN) and LDPC variable node (LVN) into one joint variable node (JVN), a non-binary LDPC (NB-LDPC) coded SG-JSG-SCMA is also proposed. Furthermore, to reduce the complexity of NBLDPC coded SG-JSG-SCMA, a joint trellis representation (JTR) is introduced to represent the search space of NB-LDPC coded SG-JSG-SCMA. Based on JTR, a low complexity joint trellis based detection and decoding (JTDD) algorithm is proposed to reduce the computational complexity of NB-LDPC coded SGJSG- SCMA system. According to the simulation results, SG-JSGSCMA brings significant performance improvement compare to the conventional receiver using the disjoint approach, and it can also outperform a Turbo-structured receiver with comparable complexity. Moreover, the joint approach also has advantages in terms of processing latency compare to the Turbo approaches
    corecore