5,668 research outputs found

    A data driven equivariant approach to constrained Gaussian mixture modeling

    Full text link
    Maximum likelihood estimation of Gaussian mixture models with different class-specific covariance matrices is known to be problematic. This is due to the unboundedness of the likelihood, together with the presence of spurious maximizers. Existing methods to bypass this obstacle are based on the fact that unboundedness is avoided if the eigenvalues of the covariance matrices are bounded away from zero. This can be done imposing some constraints on the covariance matrices, i.e. by incorporating a priori information on the covariance structure of the mixture components. The present work introduces a constrained equivariant approach, where the class conditional covariance matrices are shrunk towards a pre-specified matrix Psi. Data-driven choices of the matrix Psi, when a priori information is not available, and the optimal amount of shrinkage are investigated. The effectiveness of the proposal is evaluated on the basis of a simulation study and an empirical example

    Bayesian uncertainty quantification in linear models for diffusion MRI

    Full text link
    Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification.Comment: Added results from a group analysis and a comparison with residual bootstra

    Linear system identification using stable spline kernels and PLQ penalties

    Full text link
    The classical approach to linear system identification is given by parametric Prediction Error Methods (PEM). In this context, model complexity is often unknown so that a model order selection step is needed to suitably trade-off bias and variance. Recently, a different approach to linear system identification has been introduced, where model order determination is avoided by using a regularized least squares framework. In particular, the penalty term on the impulse response is defined by so called stable spline kernels. They embed information on regularity and BIBO stability, and depend on a small number of parameters which can be estimated from data. In this paper, we provide new nonsmooth formulations of the stable spline estimator. In particular, we consider linear system identification problems in a very broad context, where regularization functionals and data misfits can come from a rich set of piecewise linear quadratic functions. Moreover, our anal- ysis includes polyhedral inequality constraints on the unknown impulse response. For any formulation in this class, we show that interior point methods can be used to solve the system identification problem, with complexity O(n3)+O(mn2) in each iteration, where n and m are the number of impulse response coefficients and measurements, respectively. The usefulness of the framework is illustrated via a numerical experiment where output measurements are contaminated by outliers.Comment: 8 pages, 2 figure
    corecore