806 research outputs found

    Placement driven retiming with a coupled edge timing model

    Get PDF
    Retiming is a widely investigated technique for performance optimization. It performs powerful modifications on a circuit netlist. However, often it is not clear, whether the predicted performance improvement will still be valid after placement has been performed. This paper presents a new retiming algorithm using a highly accurate timing model taking into account the effect of retiming on capacitive loads of single wires as well as fanout systems. We propose the integration of retiming into a timing-driven standard cell placement environment based on simulated annealing. Retiming is used as an optimization technique throughout the whole placement process. The experimental results show the benefit of the proposed approach. In comparison with the conventional design flow based on standard FEAS our approach achieved an improvement in cycle time of up to 34% and 17% on the average

    Tight coupling of timing driven placement and retiming

    Get PDF
    Retiming is a widely investigated technique for performance optimization. In general, it performs extensive modifications on a circuit netlist, leaving it unclear, whether the achieved performance improvement will still be valid after placement has been performed. This paper presents an approach for integrating retiming into a timing-driven placement environment. The experimental results show the benefit of the proposed approach on circuit performance in comparison with design flows using retiming only as a pre- or postplacement optimization method

    On-Chip Transparent Wire Pipelining (invited paper)

    Get PDF
    Wire pipelining has been proposed as a viable mean to break the discrepancy between decreasing gate delays and increasing wire delays in deep-submicron technologies. Far from being a straightforwardly applicable technique, this methodology requires a number of design modifications in order to insert it seamlessly in the current design flow. In this paper we briefly survey the methods presented by other researchers in the field and then we thoroughly analyze the solutions we recently proposed, ranging from system-level wire pipelining to physical design aspects

    Throughput-driven floorplanning with wire pipelining

    Get PDF
    The size of future high-performance SoC is such that the time-of-flight of wires connecting distant pins in the layout can be much higher than the clock period. In order to keep the frequency as high as possible, the wires may be pipelined. However, the insertion of flip-flops may alter the throughput of the system due to the presence of loops in the logic netlist. In this paper, we address the problem of floorplanning a large design where long interconnects are pipelined by inserting the throughput in the cost function of a tool based on simulated annealing. The results obtained on a series of benchmarks are then validated using a simple router that breaks long interconnects by suitably placing flip-flops along the wires

    Equivalence checking of retimed circuits

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 25).This thesis addresses the problem of verifying the equivalence of two circuits, one or both of which have undergone register retiming as well as logic resynthesis. The aim of the thesis is to improve the ability of Formality, an equivalence checking tool written at Synopsys, to handle retimed circuits. At the beginning of this project Formality already had an implementation of peripheral retiming, an algorithm that can handle a large set of retimed circuits. In this thesis, I explain the performance, usability and special case coverage problems found in the original implementation. I review other retiming verification algorithms and conclude that none of them would perform satisfactorily in Formality. Finally, I explain the modifications made to peripheral retiming in order to solve some of the identified issues and propose partial solutions for the problems that have not been solved yet.by KarolĂ­na NetolickĂĄ.M.Eng
    • 

    corecore