6,004 research outputs found

    Adaptive Ranking Based Constraint Handling for Explicitly Constrained Black-Box Optimization

    Full text link
    A novel explicit constraint handling technique for the covariance matrix adaptation evolution strategy (CMA-ES) is proposed. The proposed constraint handling exhibits two invariance properties. One is the invariance to arbitrary element-wise increasing transformation of the objective and constraint functions. The other is the invariance to arbitrary affine transformation of the search space. The proposed technique virtually transforms a constrained optimization problem into an unconstrained optimization problem by considering an adaptive weighted sum of the ranking of the objective function values and the ranking of the constraint violations that are measured by the Mahalanobis distance between each candidate solution to its projection onto the boundary of the constraints. Simulation results are presented and show that the CMA-ES with the proposed constraint handling exhibits the affine invariance and performs similarly to the CMA-ES on unconstrained counterparts.Comment: 9 page

    Solving the G-problems in less than 500 iterations: Improved efficient constrained optimization by surrogate modeling and adaptive parameter control

    Get PDF
    Constrained optimization of high-dimensional numerical problems plays an important role in many scientific and industrial applications. Function evaluations in many industrial applications are severely limited and no analytical information about objective function and constraint functions is available. For such expensive black-box optimization tasks, the constraint optimization algorithm COBRA was proposed, making use of RBF surrogate modeling for both the objective and the constraint functions. COBRA has shown remarkable success in solving reliably complex benchmark problems in less than 500 function evaluations. Unfortunately, COBRA requires careful adjustment of parameters in order to do so. In this work we present a new self-adjusting algorithm SACOBRA, which is based on COBRA and capable to achieve high-quality results with very few function evaluations and no parameter tuning. It is shown with the help of performance profiles on a set of benchmark problems (G-problems, MOPTA08) that SACOBRA consistently outperforms any COBRA algorithm with fixed parameter setting. We analyze the importance of the several new elements in SACOBRA and find that each element of SACOBRA plays a role to boost up the overall optimization performance. We discuss the reasons behind and get in this way a better understanding of high-quality RBF surrogate modeling

    Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System

    Get PDF
    This paper proposes a novel metaheuristic framework using a Differential Evolution (DE) algorithm with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Both algorithms are combined employing a collaborative strategy with sequential execution, which is called DE-NSGA-II. The DE-NSGA-II takes advantage of the exploration abilities of the multi-objective evolutionary algorithms strengthened with the ability to search global mono-objective optimum of DE, that enhances the capability of finding those extreme solutions of Pareto Optimal Front (POF) difficult to achieve. Numerous experiments and performance comparisons between different evolutionary algorithms were performed on a referent problem for the mono-objective and multi-objective literature, which consists of the design of a double reduction gear train. A preliminary study of the problem, solved in an exhaustive way, discovers the low density of solutions in the vicinity of the optimal solution (mono-objective case) as well as in some areas of the POF of potential interest to a decision maker (multi-objective case). This characteristic of the problem would explain the considerable difficulties for its resolution when exact methods and/or metaheuristics are used, especially in the multi-objective case. However, the DE-NSGA-II framework exceeds these difficulties and obtains the whole POF which significantly improves the few previous multi-objective studies.Fil: Méndez Babey, Máximo. Universidad de Las Palmas de Gran Canaria; EspañaFil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: González, Begoña. Universidad de Las Palmas de Gran Canaria; EspañaFil: Frutos, Mariano. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentin

    Ortalama-varyans portföy optimizasyonunda genetik algoritma uygulamaları üzerine bir literatür araştırması

    Get PDF
    Mean-variance portfolio optimization model, introduced by Markowitz, provides a fundamental answer to the problem of portfolio management. This model seeks an efficient frontier with the best trade-offs between two conflicting objectives of maximizing return and minimizing risk. The problem of determining an efficient frontier is known to be NP-hard. Due to the complexity of the problem, genetic algorithms have been widely employed by a growing number of researchers to solve this problem. In this study, a literature review of genetic algorithms implementations on mean-variance portfolio optimization is examined from the recent published literature. Main specifications of the problems studied and the specifications of suggested genetic algorithms have been summarized

    A Constraint-based Model for Multi-objective Repair Planning

    Get PDF
    This work presents a constraint based model for the planning and scheduling of disconnection and connection tasks when repairing faulty components in a system. Since multi-mode operations are considered, the problem involves the ordering and the selection of the tasks and modes from a set of alternatives, using the shared resources efficiently. Additionally, delays due to change of configurations and transportation are considered. The goal is the minimization of two objective functions: makespan and cost. The set of all feasible plans are represented by an extended And/Or graph, that embodies all of the constraints of the problem, allowing non reversible and parallel plans. A simple branch-and-bound algorithm has been used for testing the model with different combinations of the functions to minimize using the weighted-sum approach.Ministerio de Educación y Ciencia DIP2006-15476-C02-0

    An equitable approach to the payment scheduling problem in project management

    Get PDF
    This study reports on a new approach to the payment scheduling problem. In this approach, the amount and timing of the payments made by the client and received by the contractor are determined so as to achieve an equitable solution. An equitable solution is defined as one where both the contractor and the client deviate from their respective ideal solutions by an equal percentage. The ideal solutions for the contractor and the client result from having a lump sum payment at the start and end of the project respectively. A double loop genetic algorithm is proposed to solve for an equitable solution. The outer loop represents the client and the inner loop the contractor. The inner loop corresponds to a multi-mode resource constrained project scheduling problem with the objective of maximizing the contractor's net present value for a given payment distribution. When searching for an equitable solution, information flows between the outer and inner loops regarding the payment distribution over the event nodes and the timing of these payments. An example problem is solved and analyzed. A set of 93 problems from the literature are solved and some computational results are reported

    Solution of the Multi-objective Economic and Emission Load Dispatch Problem Using Adaptive Real Quantum Inspired Evolutionary Algorithm

    Get PDF
    Economic load dispatch is a complex and significant problem in power generation. The inclusion of emission with economic operation makes it a Multi-objective economic emission load dispatch (MOEELD) problem. So it is a tough task to resolve a constrained MOEELD problem with antagonistic multiple objectives of emission and cost. Evolutionary Algorithms (EA) have been widely used for solving such complex multi-objective problems. However, the performance of EAs on such problems is dependent on the choice of the operators and their parameters, which becomes a complex issue to solve in itself. The present work is carried out to solve a Multi-objective economic emission load dispatch problem using a Multi-objective adaptive real coded quantum-inspired evolutionary algorithm (MO-ARQIEA) with gratifying all the constraints of unit and system. A repair-based constraint handling and adaptive quantum crossover operator (ACO) are used to satisfy the constraints and preserve the diversity of the suggested approach. The suggested approach is evaluated on the IEEE 30-Bus system consisting of six generating units. These results obtained for different test cases are compared with other reputed and well-known techniques
    corecore