523 research outputs found

    Stable L\'{e}vy diffusion and related model fitting

    Full text link
    A fractional advection-dispersion equation (fADE) has been advocated for heavy-tailed flows where the usual Brownian diffusion models fail. A stochastic differential equation (SDE) driven by a stable L\'{e}vy process gives a forward equation that matches the space-fractional advection-dispersion equation and thus gives the stochastic framework of particle tracking for heavy-tailed flows. For constant advection and dispersion coefficient functions, the solution to such SDE itself is a stable process and can be derived easily by least square parameter fitting from the observed flow concentration data. However, in a more generalized scenario, a closed form for the solution to a stable SDE may not exist. We propose a numerical method for solving/generating a stable SDE in a general set-up. The method incorporates a discretized finite volume scheme with the characteristic line to solve the fADE or the forward equation for the Markov process that solves the stable SDE. Then we use a numerical scheme to generate the solution to the governing SDE using the fADE solution. Also, often the functional form of the advection or dispersion coefficients are not known for a given plume concentration data to start with. We use a Levenberg--Marquardt (L-M) regularization method to estimate advection and dispersion coefficient function from the observed data (we present the case for a linear advection) and proceed with the SDE solution construction described above.Comment: Published at https://doi.org/10.15559/18-VMSTA106 in the Modern Stochastics: Theory and Applications (https://vmsta.org/) by VTeX (http://www.vtex.lt/

    Inverse Problems of Determining Coefficients of the Fractional Partial Differential Equations

    Full text link
    When considering fractional diffusion equation as model equation in analyzing anomalous diffusion processes, some important parameters in the model, for example, the orders of the fractional derivative or the source term, are often unknown, which requires one to discuss inverse problems to identify these physical quantities from some additional information that can be observed or measured practically. This chapter investigates several kinds of inverse coefficient problems for the fractional diffusion equation

    Ecuaciones diferenciales fraccionarias y problemas inversos.

    Get PDF
    DiagramasOur goal is the study of identification problems in the framework of transport equations with fractional derivatives. We consider time fractional diffusion equations and space fractional advection dispersion equations. The majority of inverse problems are ill-posed and require regularization. In this thesis we implement one and two dimensional discrete mollification as regularization procedures. The main original results are located in chapters 4 and 5 but chapter 2 and the appendices contain other material studied for the thesis, including several original proofs. The selected software tool is MATLAB and all the routines for numerical examples are original. Thus, the routines are part of the original results of the thesis. Chapters 1, 2 and 3 are introductions to the thesis, inverse problems and fractional derivatives respectively. They are survey chapters written specifically for this thesis.Nuestro objetivo es el estudio de problemas de identificación en el marco de ecuaciones de transporte con derivadas fraccionarias. Consideramos ecuaciones difusivas con derivada temporal fraccionaria y ecuaciones de advección dispersión con derivada espacial fraccionaria. La mayoría de los problemas inversos son mal condicionados y requieren regularización. En esta tesis implementamos procedimientos de regularización basados en molificación discreta en una y dos dimensiones. Los principales resultados originales se encuentran en los capítulos 4 y 5 pero el capítulo 2 y los apéndices contienen material adicional estudiado para la tesis incluídas varias demostra- ciones originales. La herramienta de software escogida es MATLAB y todas las rutinas para los ejemplos numéricos son originales, de manera que las rutinas son parte de los resultados originales de la tesis. Los capítulos 1, 2 y 3 son introductorios a la tesis, a los problemas inversos y a las derivadas fraccionarias respectivamente. Se trata de capítulos monográficos escritos especialmente para esta tesis. (Texto tomado de la fuente)Convocatoria 647 de ColcienciasDoctoradoDoctor en Ciencias - MatemáticasAnálisis Numéric

    An inverse Sturm-Liouville problem with a fractional derivative

    Full text link
    In this paper, we numerically investigate an inverse problem of recovering the potential term in a fractional Sturm-Liouville problem from one spectrum. The qualitative behaviors of the eigenvalues and eigenfunctions are discussed, and numerical reconstructions of the potential with a Newton method from finite spectral data are presented. Surprisingly, it allows very satisfactory reconstructions for both smooth and discontinuous potentials, provided that the order α(1,2)\alpha\in(1,2) of fractional derivative is sufficiently away from 2.Comment: 16 pages, 6 figures, accepted for publication in Journal of Computational Physic
    corecore