1,125 research outputs found

    Real-Time Localization Using Software Defined Radio

    Get PDF
    Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system

    Simplification of the generalized adaptive neural filter and comparative studies with other nonlinear filters

    Get PDF
    Recently, a new class of adaptive filters called Generalized Adaptive Neural Filters (GANFs) has emerged. They share many characteristics in common with stack filters, include all stack filters as a subset. The GANFs allow a very efficient hardware implementation once they are trained. However, there are some problems associated with GANFs. Three of these arc slow training speeds and the difficulty in choosing a filter structure and neural operator. This thesis begins with a tutorial on filtering and traces the GANF development up through its origin -- the stack filter. After the GANF is covered in reasonable depth, its use as an image processing filter is examined. Its usefulness is determined based on simulation comparisons with other common filters. Also, some problems of GANFs are looked into. A brief study which investigates different types of neural networks and their applicability to GANFs is presented. Finally, some ideas on increasing the speed of the GANF are discussed. While these improvements do not completely solve the GANF\u27s problems, they make a measurable difference and bring the filter closer to reality

    Proceedings of the Mobile Satellite Conference

    Get PDF
    A satellite-based mobile communications system provides voice and data communications to mobile users over a vast geographic area. The technical and service characteristics of mobile satellite systems (MSSs) are presented and form an in-depth view of the current MSS status at the system and subsystem levels. Major emphasis is placed on developments, current and future, in the following critical MSS technology areas: vehicle antennas, networking, modulation and coding, speech compression, channel characterization, space segment technology and MSS experiments. Also, the mobile satellite communications needs of government agencies are addressed, as is the MSS potential to fulfill them

    Navigation with Artificial Neural Networks

    Get PDF
    The objective of this dissertation is to explore the applications for Artificial Neural Networks (ANNs) in the field of Navigation. The state of the art for ANNs has improved significantly so now they can rival and even surpass humans in problems once thought impossible. We present different methods to augment, combine, or replace existing Navigation filters with ANN. The main focus of these methods is to use as much existing knowledge as possible then use ANNs to extend the current knowledge base. Next, improvements are made for a class of Artificial Neural Network (ANN)s which provide covariance called Mixture Density Network (MDN)s. MDNs are necessary since covariance is required for navigation problems. Finally the improvements and framework are demonstrated in a Very Low Frequency (VLF) signals navigation problem. Without ANNs, our VLF signals navigation problem would be very difficult. We conduct two VLF navigation experiments with an indoor and outdoor environment. The ANNs used for these problems provide confidence with probabilistic estimates of position either through class probabilities or probability distributions parameterized by the output of MDNs. ANNs need a measure of confidence in their estimates to work with the filters since navigation filters require a confidence of their estimates. In our problems we achieve an indoor localization accuracy of 86.7% for 50 discrete locations, and a 2D RMS error of 63m for a 1km2 area of navigation
    • …
    corecore