784 research outputs found

    An Approach of QoS Evaluation for Web Services Design With Optimized Avoidance of SLA Violations

    Get PDF
    Quality of service (QoS) is an official agreement that governs the contractual commitments between service providers and consumers in respect to various nonfunctional requirements, such as performance, dependability, and security. While more Web services are available for the construction of software systems based upon service-oriented architecture (SOA), QoS has become a decisive factor for service consumers to choose from service providers who provide similar services. QoS is usually documented on a service-level agreement (SLA) to ensure the functionality and quality of services and to define monetary penalties in case of any violation of the written agreement. Consequently, service providers have a strong interest in keeping their commitments to avoid and reduce the situations that may cause SLA violations.However, there is a noticeable shortage of tools that can be used by service providers to either quantitively evaluate QoS of their services for the predication of SLA violations or actively adjust their design for the avoidance of SLA violations with optimized service reconfigurations. Developed in this dissertation research is an innovative framework that tackles the problem of SLA violations in three separated yet connected phases. For a given SOA system under examination, the framework employs sensitivity analysis in the first phase to identify factors that are influential to system performance, and the impact of influential factors on QoS is then quantitatively measured with a metamodel-based analysis in the second phase. The results of analyses are then used in the third phase to search both globally and locally for optimal solutions via a controlled number of experiments. In addition to technical details, this dissertation includes experiment results to demonstrate that this new approach can help service providers not only predicting SLA violations but also avoiding the unnecessary increase of the operational cost during service optimization

    Web service QoS prediction using improved software source code metrics

    Get PDF
    Due to the popularity of Web-based applications, various developers have provided an abundance of Web services with similar functionality. Such similarity makes it challenging for users to discover, select, and recommend appropriate Web services for the service-oriented systems. Quality of Service (QoS) has become a vital criterion for service discovery, selection, and recommendation. Unfortunately, service registries cannot ensure the validity of the available quality values of the Web services provided online. Consequently, predicting the Web services' QoS values has become a vital way to find the most appropriate services. In this paper, we propose a novel methodology for predicting Web service QoS using source code metrics. The core component is aggregating software metrics using inequality distribution from micro level of individual class to the macro level of the entire Web service. We used correlation between QoS and software metrics to train the learning machine. We validate and evaluate our approach using three sets of software quality metrics. Our results show that the proposed methodology can help improve the efficiency for the prediction of QoS properties using its source code metrics

    Exploring traffic and QoS management mechanisms to support mobile cloud computing using service localisation in heterogeneous environments

    Get PDF
    In recent years, mobile devices have evolved to support an amalgam of multimedia applications and content. However, the small size of these devices poses a limit the amount of local computing resources. The emergence of Cloud technology has set the ground for an era of task offloading for mobile devices and we are now seeing the deployment of applications that make more extensive use of Cloud processing as a means of augmenting the capabilities of mobiles. Mobile Cloud Computing is the term used to describe the convergence of these technologies towards applications and mechanisms that offload tasks from mobile devices to the Cloud. In order for mobile devices to access Cloud resources and successfully offload tasks there, a solution for constant and reliable connectivity is required. The proliferation of wireless technology ensures that networks are available almost everywhere in an urban environment and mobile devices can stay connected to a network at all times. However, user mobility is often the cause of intermittent connectivity that affects the performance of applications and ultimately degrades the user experience. 5th Generation Networks are introducing mechanisms that enable constant and reliable connectivity through seamless handovers between networks and provide the foundation for a tighter coupling between Cloud resources and mobiles. This convergence of technologies creates new challenges in the areas of traffic management and QoS provisioning. The constant connectivity to and reliance of mobile devices on Cloud resources have the potential of creating large traffic flows between networks. Furthermore, depending on the type of application generating the traffic flow, very strict QoS may be required from the networks as suboptimal performance may severely degrade an application’s functionality. In this thesis, I propose a new service delivery framework, centred on the convergence of Mobile Cloud Computing and 5G networks for the purpose of optimising service delivery in a mobile environment. The framework is used as a guideline for identifying different aspects of service delivery in a mobile environment and for providing a path for future research in this field. The focus of the thesis is placed on the service delivery mechanisms that are responsible for optimising the QoS and managing network traffic. I present a solution for managing traffic through dynamic service localisation according to user mobility and device connectivity. I implement a prototype of the solution in a virtualised environment as a proof of concept and demonstrate the functionality and results gathered from experimentation. Finally, I present a new approach to modelling network performance by taking into account user mobility. The model considers the overall performance of a persistent connection as the mobile node switches between different networks. Results from the model can be used to determine which networks will negatively affect application performance and what impact they will have for the duration of the user's movement. The proposed model is evaluated using an analytical approac

    Ubiquitous Computing

    Get PDF
    The aim of this book is to give a treatment of the actively developed domain of Ubiquitous computing. Originally proposed by Mark D. Weiser, the concept of Ubiquitous computing enables a real-time global sensing, context-aware informational retrieval, multi-modal interaction with the user and enhanced visualization capabilities. In effect, Ubiquitous computing environments give extremely new and futuristic abilities to look at and interact with our habitat at any time and from anywhere. In that domain, researchers are confronted with many foundational, technological and engineering issues which were not known before. Detailed cross-disciplinary coverage of these issues is really needed today for further progress and widening of application range. This book collects twelve original works of researchers from eleven countries, which are clustered into four sections: Foundations, Security and Privacy, Integration and Middleware, Practical Applications

    Quality of experience aware adaptive hypermedia system

    Get PDF
    The research reported in this thesis proposes, designs and tests a novel Quality of Experience Layer (QoE-layer) for the classic Adaptive Hypermedia Systems (AHS) architecture. Its goal is to improve the end-user perceived Quality of Service in different operational environments suitable for residential users. While the AHS’ main role of delivering personalised content is not altered, its functionality and performance is improved and thus the user satisfaction with the service provided. The QoE Layer takes into account multiple factors that affect Quality of Experience (QoE), such as Web components and network connection. It uses a novel Perceived Performance Model that takes into consideration a variety of performance metrics, in order to learn about the Web user operational environment characteristics, about changes in network connection and the consequences of these changes on the user’s quality of experience. This model also considers the user’s subjective opinion about his/her QoE, increasing its effectiveness and suggests strategies for tailoring Web content in order to improve QoE. The user related information is modelled using a stereotype-based technique that makes use of probability and distribution theory. The QoE-Layer has been assessed through both simulations and qualitative evaluation in the educational area (mainly distance learning), when users interact with the system in a low bit rate operational environment. The simulations have assessed “learning” and “adaptability” behaviour of the proposed layer in different and variable home connections when a learning task is performed. The correctness of Perceived Performance Model (PPM) suggestions, access time of the learning process and quantity of transmitted data were analysed. The results show that the QoE layer significantly improves the performance in terms of the access time of the learning process with a reduction in the quantity of data sent by using image compression and/or elimination. A visual quality assessment confirmed that this image quality reduction does not significantly affect the viewers’ perceived quality that was close to “good” perceptual level. For qualitative evaluation the QoE layer has been deployed on the open-source AHA! system. The goal of this evaluation was to compare the learning outcome, system usability and user satisfaction when AHA! and QoE-ware AHA systems were used. The assessment was performed in terms of learner achievement, learning performance and usability assessment. The results indicate that QoE-aware AHA system did not affect the learning outcome (the students have similar-learning achievements) but the learning performance was improved in terms of study time. Most significantly, QoE-aware AHA provides an important improvement in system usability as indicated by users’ opinion about their satisfaction related to QoE

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions
    • 

    corecore